Metamath Proof Explorer


Theorem pldofph

Description: Given, a,b c, d, "definition" for e, e is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses pldofph.1 τ χ θ φ χ φ ψ ψ θ
pldofph.2 φ
pldofph.3 ψ
pldofph.4 χ
pldofph.5 θ
Assertion pldofph τ

Proof

Step Hyp Ref Expression
1 pldofph.1 τ χ θ φ χ φ ψ ψ θ
2 pldofph.2 φ
3 pldofph.3 ψ
4 pldofph.4 χ
5 pldofph.5 θ
6 5 a1i χ θ
7 2 4 2th φ χ
8 3 5 2th ψ θ
9 8 a1i φ ψ ψ θ
10 6 7 9 3pm3.2i χ θ φ χ φ ψ ψ θ
11 1 bicomi χ θ φ χ φ ψ ψ θ τ
12 11 biimpi χ θ φ χ φ ψ ψ θ τ
13 10 12 ax-mp τ