Metamath Proof Explorer


Theorem ple1

Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011) (Revised by NM, 13-Sep-2018)

Ref Expression
Hypotheses ple1.b B = Base K
ple1.u U = lub K
ple1.l ˙ = K
ple1.1 1 ˙ = 1. K
ple1.k φ K V
ple1.x φ X B
ple1.d φ B dom U
Assertion ple1 φ X ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 ple1.b B = Base K
2 ple1.u U = lub K
3 ple1.l ˙ = K
4 ple1.1 1 ˙ = 1. K
5 ple1.k φ K V
6 ple1.x φ X B
7 ple1.d φ B dom U
8 1 3 2 5 7 6 luble φ X ˙ U B
9 1 2 4 p1val K V 1 ˙ = U B
10 5 9 syl φ 1 ˙ = U B
11 8 10 breqtrrd φ X ˙ 1 ˙