Metamath Proof Explorer


Theorem plendxnocndx

Description: The slot for the orthocomplementation is not the slot for the order in an extensible structure. Formerly part of proof for thlle . (Contributed by AV, 11-Nov-2024)

Ref Expression
Assertion plendxnocndx ndxocndx

Proof

Step Hyp Ref Expression
1 10re 10
2 1nn0 10
3 0nn0 00
4 1nn 1
5 0lt1 0<1
6 2 3 4 5 declt 10<11
7 1 6 ltneii 1011
8 plendx ndx=10
9 ocndx ocndx=11
10 8 9 neeq12i ndxocndx1011
11 7 10 mpbir ndxocndx