Metamath Proof Explorer


Theorem plpv

Description: Value of addition on positive reals. (Contributed by NM, 28-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion plpv A 𝑷 B 𝑷 A + 𝑷 B = x | y A z B x = y + 𝑸 z

Proof

Step Hyp Ref Expression
1 df-plp + 𝑷 = u 𝑷 , v 𝑷 f | g u h v f = g + 𝑸 h
2 addclnq g 𝑸 h 𝑸 g + 𝑸 h 𝑸
3 1 2 genpv A 𝑷 B 𝑷 A + 𝑷 B = x | y A z B x = y + 𝑸 z