Database
BASIC ORDER THEORY
Partially ordered sets (posets)
pltfval
Next ⟩
pltval
Metamath Proof Explorer
Ascii
Unicode
Theorem
pltfval
Description:
Value of the less-than relation.
(Contributed by
Mario Carneiro
, 8-Feb-2015)
Ref
Expression
Hypotheses
pltval.l
⊢
≤
˙
=
≤
K
pltval.s
⊢
<
˙
=
<
K
Assertion
pltfval
⊢
K
∈
A
→
<
˙
=
≤
˙
∖
I
Proof
Step
Hyp
Ref
Expression
1
pltval.l
⊢
≤
˙
=
≤
K
2
pltval.s
⊢
<
˙
=
<
K
3
elex
⊢
K
∈
A
→
K
∈
V
4
fveq2
⊢
p
=
K
→
≤
p
=
≤
K
5
4
1
eqtr4di
⊢
p
=
K
→
≤
p
=
≤
˙
6
5
difeq1d
⊢
p
=
K
→
≤
p
∖
I
=
≤
˙
∖
I
7
df-plt
⊢
lt
=
p
∈
V
⟼
≤
p
∖
I
8
1
fvexi
⊢
≤
˙
∈
V
9
8
difexi
⊢
≤
˙
∖
I
∈
V
10
6
7
9
fvmpt
⊢
K
∈
V
→
<
K
=
≤
˙
∖
I
11
3
10
syl
⊢
K
∈
A
→
<
K
=
≤
˙
∖
I
12
2
11
eqtrid
⊢
K
∈
A
→
<
˙
=
≤
˙
∖
I