Metamath Proof Explorer


Theorem pltfval

Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses pltval.l ˙ = K
pltval.s < ˙ = < K
Assertion pltfval K A < ˙ = ˙ I

Proof

Step Hyp Ref Expression
1 pltval.l ˙ = K
2 pltval.s < ˙ = < K
3 elex K A K V
4 fveq2 p = K p = K
5 4 1 eqtr4di p = K p = ˙
6 5 difeq1d p = K p I = ˙ I
7 df-plt lt = p V p I
8 1 fvexi ˙ V
9 8 difexi ˙ I V
10 6 7 9 fvmpt K V < K = ˙ I
11 3 10 syl K A < K = ˙ I
12 2 11 eqtrid K A < ˙ = ˙ I