Metamath Proof Explorer


Theorem pltirr

Description: The "less than" relation is not reflexive. ( pssirr analog.) (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypothesis pltne.s < ˙ = < K
Assertion pltirr K A X B ¬ X < ˙ X

Proof

Step Hyp Ref Expression
1 pltne.s < ˙ = < K
2 eqid X = X
3 1 pltne K A X B X B X < ˙ X X X
4 3 3anidm23 K A X B X < ˙ X X X
5 4 necon2bd K A X B X = X ¬ X < ˙ X
6 2 5 mpi K A X B ¬ X < ˙ X