Metamath Proof Explorer


Theorem pltn2lp

Description: The less-than relation has no 2-cycle loops. ( pssn2lp analog.) (Contributed by NM, 2-Dec-2011)

Ref Expression
Hypotheses pltnlt.b B=BaseK
pltnlt.s <˙=<K
Assertion pltn2lp KPosetXBYB¬X<˙YY<˙X

Proof

Step Hyp Ref Expression
1 pltnlt.b B=BaseK
2 pltnlt.s <˙=<K
3 eqid K=K
4 1 3 2 pltnle KPosetXBYBX<˙Y¬YKX
5 4 ex KPosetXBYBX<˙Y¬YKX
6 3 2 pltle KPosetYBXBY<˙XYKX
7 6 3com23 KPosetXBYBY<˙XYKX
8 5 7 nsyld KPosetXBYBX<˙Y¬Y<˙X
9 imnan X<˙Y¬Y<˙X¬X<˙YY<˙X
10 8 9 sylib KPosetXBYB¬X<˙YY<˙X