Metamath Proof Explorer


Theorem pltne

Description: The "less than" relation is not reflexive. ( df-pss analog.) (Contributed by NM, 2-Dec-2011)

Ref Expression
Hypothesis pltne.s < ˙ = < K
Assertion pltne K A X B Y C X < ˙ Y X Y

Proof

Step Hyp Ref Expression
1 pltne.s < ˙ = < K
2 eqid K = K
3 2 1 pltval K A X B Y C X < ˙ Y X K Y X Y
4 3 simplbda K A X B Y C X < ˙ Y X Y
5 4 ex K A X B Y C X < ˙ Y X Y