Metamath Proof Explorer


Theorem plusffval

Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses plusffval.1 B = Base G
plusffval.2 + ˙ = + G
plusffval.3 ˙ = + 𝑓 G
Assertion plusffval ˙ = x B , y B x + ˙ y

Proof

Step Hyp Ref Expression
1 plusffval.1 B = Base G
2 plusffval.2 + ˙ = + G
3 plusffval.3 ˙ = + 𝑓 G
4 fveq2 g = G Base g = Base G
5 4 1 eqtr4di g = G Base g = B
6 fveq2 g = G + g = + G
7 6 2 eqtr4di g = G + g = + ˙
8 7 oveqd g = G x + g y = x + ˙ y
9 5 5 8 mpoeq123dv g = G x Base g , y Base g x + g y = x B , y B x + ˙ y
10 df-plusf + 𝑓 = g V x Base g , y Base g x + g y
11 1 fvexi B V
12 2 fvexi + ˙ V
13 12 rnex ran + ˙ V
14 p0ex V
15 13 14 unex ran + ˙ V
16 df-ov x + ˙ y = + ˙ x y
17 fvrn0 + ˙ x y ran + ˙
18 16 17 eqeltri x + ˙ y ran + ˙
19 18 rgen2w x B y B x + ˙ y ran + ˙
20 11 11 15 19 mpoexw x B , y B x + ˙ y V
21 9 10 20 fvmpt G V + 𝑓 G = x B , y B x + ˙ y
22 fvprc ¬ G V + 𝑓 G =
23 fvprc ¬ G V Base G =
24 1 23 eqtrid ¬ G V B =
25 24 olcd ¬ G V B = B =
26 0mpo0 B = B = x B , y B x + ˙ y =
27 25 26 syl ¬ G V x B , y B x + ˙ y =
28 22 27 eqtr4d ¬ G V + 𝑓 G = x B , y B x + ˙ y
29 21 28 pm2.61i + 𝑓 G = x B , y B x + ˙ y
30 3 29 eqtri ˙ = x B , y B x + ˙ y