Metamath Proof Explorer


Theorem plusfval

Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses plusffval.1 B = Base G
plusffval.2 + ˙ = + G
plusffval.3 ˙ = + 𝑓 G
Assertion plusfval X B Y B X ˙ Y = X + ˙ Y

Proof

Step Hyp Ref Expression
1 plusffval.1 B = Base G
2 plusffval.2 + ˙ = + G
3 plusffval.3 ˙ = + 𝑓 G
4 oveq12 x = X y = Y x + ˙ y = X + ˙ Y
5 1 2 3 plusffval ˙ = x B , y B x + ˙ y
6 ovex X + ˙ Y V
7 4 5 6 ovmpoa X B Y B X ˙ Y = X + ˙ Y