Metamath Proof Explorer


Theorem plvcofph

Description: Given, a,b,d, and "definitions" for c, e, f: f is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses plvcofph.1 χ φ ψ φ φ ¬ φ ¬ φ φ ¬ φ ¬ φ
plvcofph.2 τ χ θ φ χ φ ψ ψ θ
plvcofph.3 η χ τ
plvcofph.4 φ
plvcofph.5 ψ
plvcofph.6 θ
Assertion plvcofph η

Proof

Step Hyp Ref Expression
1 plvcofph.1 χ φ ψ φ φ ¬ φ ¬ φ φ ¬ φ ¬ φ
2 plvcofph.2 τ χ θ φ χ φ ψ ψ θ
3 plvcofph.3 η χ τ
4 plvcofph.4 φ
5 plvcofph.5 ψ
6 plvcofph.6 θ
7 1 4 5 plcofph χ
8 2 4 5 7 6 pldofph τ
9 7 8 pm3.2i χ τ
10 3 bicomi χ τ η
11 10 biimpi χ τ η
12 9 11 ax-mp η