Metamath Proof Explorer


Theorem plvcofphax

Description: Given, a,b,d, and "definitions" for c, e, f, g: g is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses plvcofphax.1 χ φ ψ φ φ ¬ φ ¬ φ φ ¬ φ ¬ φ
plvcofphax.2 τ χ θ φ χ φ ψ ψ θ
plvcofphax.3 η χ τ
plvcofphax.4 φ
plvcofphax.5 ψ
plvcofphax.6 θ
plvcofphax.7 ζ ¬ ψ ¬ τ
Assertion plvcofphax ζ

Proof

Step Hyp Ref Expression
1 plvcofphax.1 χ φ ψ φ φ ¬ φ ¬ φ φ ¬ φ ¬ φ
2 plvcofphax.2 τ χ θ φ χ φ ψ ψ θ
3 plvcofphax.3 η χ τ
4 plvcofphax.4 φ
5 plvcofphax.5 ψ
6 plvcofphax.6 θ
7 plvcofphax.7 ζ ¬ ψ ¬ τ
8 1 4 5 plcofph χ
9 2 4 5 8 6 pldofph τ
10 5 9 pm3.2i ψ τ
11 pm3.4 ψ τ ψ τ
12 10 11 ax-mp ψ τ
13 iman ψ τ ¬ ψ ¬ τ
14 13 biimpi ψ τ ¬ ψ ¬ τ
15 12 14 ax-mp ¬ ψ ¬ τ
16 7 bicomi ¬ ψ ¬ τ ζ
17 16 biimpi ¬ ψ ¬ τ ζ
18 15 17 ax-mp ζ