Metamath Proof Explorer
Description: rh is derivable because ONLY one of ch, th, ta, et is implied by mu.
(Contributed by Jarvin Udandy, 11-Sep-2020)
|
|
Ref |
Expression |
|
Hypotheses |
plvofpos.1 |
|
|
|
plvofpos.2 |
|
|
|
plvofpos.3 |
|
|
|
plvofpos.4 |
|
|
|
plvofpos.5 |
|
|
|
plvofpos.6 |
|
|
|
plvofpos.7 |
|
|
|
plvofpos.8 |
|
|
|
plvofpos.9 |
|
|
Assertion |
plvofpos |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
plvofpos.1 |
|
2 |
|
plvofpos.2 |
|
3 |
|
plvofpos.3 |
|
4 |
|
plvofpos.4 |
|
5 |
|
plvofpos.5 |
|
6 |
|
plvofpos.6 |
|
7 |
|
plvofpos.7 |
|
8 |
|
plvofpos.8 |
|
9 |
|
plvofpos.9 |
|
10 |
8 9
|
pm3.2i |
|
11 |
7
|
bicomi |
|
12 |
11
|
biimpi |
|
13 |
10 12
|
ax-mp |
|