Metamath Proof Explorer


Theorem plvofpos

Description: rh is derivable because ONLY one of ch, th, ta, et is implied by mu. (Contributed by Jarvin Udandy, 11-Sep-2020)

Ref Expression
Hypotheses plvofpos.1 χ ¬ φ ¬ ψ
plvofpos.2 θ ¬ φ ψ
plvofpos.3 τ φ ¬ ψ
plvofpos.4 η φ ψ
plvofpos.5 ζ ¬ μ χ μ θ ¬ μ χ μ τ ¬ μ χ χ η ¬ μ θ μ τ ¬ μ θ μ η ¬ μ τ μ η
plvofpos.6 σ μ χ μ θ μ τ μ η
plvofpos.7 ρ ζ σ
plvofpos.8 ζ
plvofpos.9 σ
Assertion plvofpos ρ

Proof

Step Hyp Ref Expression
1 plvofpos.1 χ ¬ φ ¬ ψ
2 plvofpos.2 θ ¬ φ ψ
3 plvofpos.3 τ φ ¬ ψ
4 plvofpos.4 η φ ψ
5 plvofpos.5 ζ ¬ μ χ μ θ ¬ μ χ μ τ ¬ μ χ χ η ¬ μ θ μ τ ¬ μ θ μ η ¬ μ τ μ η
6 plvofpos.6 σ μ χ μ θ μ τ μ η
7 plvofpos.7 ρ ζ σ
8 plvofpos.8 ζ
9 plvofpos.9 σ
10 8 9 pm3.2i ζ σ
11 7 bicomi ζ σ ρ
12 11 biimpi ζ σ ρ
13 10 12 ax-mp ρ