Metamath Proof Explorer
Description: rh is derivable because ONLY one of ch, th, ta, et is implied by mu.
(Contributed by Jarvin Udandy, 11-Sep-2020)
|
|
Ref |
Expression |
|
Hypotheses |
plvofpos.1 |
|
|
|
plvofpos.2 |
|
|
|
plvofpos.3 |
|
|
|
plvofpos.4 |
|
|
|
plvofpos.5 |
|
|
|
plvofpos.6 |
|
|
|
plvofpos.7 |
|
|
|
plvofpos.8 |
|
|
|
plvofpos.9 |
|
|
Assertion |
plvofpos |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plvofpos.1 |
|
| 2 |
|
plvofpos.2 |
|
| 3 |
|
plvofpos.3 |
|
| 4 |
|
plvofpos.4 |
|
| 5 |
|
plvofpos.5 |
|
| 6 |
|
plvofpos.6 |
|
| 7 |
|
plvofpos.7 |
|
| 8 |
|
plvofpos.8 |
|
| 9 |
|
plvofpos.9 |
|
| 10 |
8 9
|
pm3.2i |
|
| 11 |
7
|
bicomi |
|
| 12 |
11
|
biimpi |
|
| 13 |
10 12
|
ax-mp |
|