Metamath Proof Explorer


Theorem ply0

Description: The zero function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion ply0 S0𝑝PolyS

Proof

Step Hyp Ref Expression
1 df-0p 0𝑝=×0
2 id SS
3 0cnd S0
4 3 snssd S0
5 2 4 unssd SS0
6 ssun2 0S0
7 c0ex 0V
8 7 snss 0S00S0
9 6 8 mpbir 0S0
10 plyconst S00S0×0PolyS0
11 5 9 10 sylancl S×0PolyS0
12 1 11 eqeltrid S0𝑝PolyS0
13 plyun0 PolyS0=PolyS
14 12 13 eleqtrdi S0𝑝PolyS