Metamath Proof Explorer


Theorem ply0

Description: The zero function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion ply0 S 0 𝑝 Poly S

Proof

Step Hyp Ref Expression
1 df-0p 0 𝑝 = × 0
2 id S S
3 0cnd S 0
4 3 snssd S 0
5 2 4 unssd S S 0
6 ssun2 0 S 0
7 c0ex 0 V
8 7 snss 0 S 0 0 S 0
9 6 8 mpbir 0 S 0
10 plyconst S 0 0 S 0 × 0 Poly S 0
11 5 9 10 sylancl S × 0 Poly S 0
12 1 11 eqeltrid S 0 𝑝 Poly S 0
13 plyun0 Poly S 0 = Poly S
14 12 13 eleqtrdi S 0 𝑝 Poly S