Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Elementary properties of complex polynomials
ply0
Next ⟩
plyid
Metamath Proof Explorer
Ascii
Unicode
Theorem
ply0
Description:
The zero function is a polynomial.
(Contributed by
Mario Carneiro
, 17-Jul-2014)
Ref
Expression
Assertion
ply0
⊢
S
⊆
ℂ
→
0
𝑝
∈
Poly
⁡
S
Proof
Step
Hyp
Ref
Expression
1
df-0p
⊢
0
𝑝
=
ℂ
×
0
2
id
⊢
S
⊆
ℂ
→
S
⊆
ℂ
3
0cnd
⊢
S
⊆
ℂ
→
0
∈
ℂ
4
3
snssd
⊢
S
⊆
ℂ
→
0
⊆
ℂ
5
2
4
unssd
⊢
S
⊆
ℂ
→
S
∪
0
⊆
ℂ
6
ssun2
⊢
0
⊆
S
∪
0
7
c0ex
⊢
0
∈
V
8
7
snss
⊢
0
∈
S
∪
0
↔
0
⊆
S
∪
0
9
6
8
mpbir
⊢
0
∈
S
∪
0
10
plyconst
⊢
S
∪
0
⊆
ℂ
∧
0
∈
S
∪
0
→
ℂ
×
0
∈
Poly
⁡
S
∪
0
11
5
9
10
sylancl
⊢
S
⊆
ℂ
→
ℂ
×
0
∈
Poly
⁡
S
∪
0
12
1
11
eqeltrid
⊢
S
⊆
ℂ
→
0
𝑝
∈
Poly
⁡
S
∪
0
13
plyun0
⊢
Poly
⁡
S
∪
0
=
Poly
⁡
S
14
12
13
eleqtrdi
⊢
S
⊆
ℂ
→
0
𝑝
∈
Poly
⁡
S