Metamath Proof Explorer


Theorem ply1ascl0

Description: The zero scalar as a polynomial. (Contributed by Thierry Arnoux, 20-Jan-2025)

Ref Expression
Hypotheses ply1ascl0.w W = Poly 1 R
ply1ascl0.a A = algSc W
ply1ascl0.o O = 0 R
ply1ascl0.1 0 ˙ = 0 W
ply1ascl0.r φ R Ring
Assertion ply1ascl0 φ A O = 0 ˙

Proof

Step Hyp Ref Expression
1 ply1ascl0.w W = Poly 1 R
2 ply1ascl0.a A = algSc W
3 ply1ascl0.o O = 0 R
4 ply1ascl0.1 0 ˙ = 0 W
5 ply1ascl0.r φ R Ring
6 1 ply1sca R Ring R = Scalar W
7 5 6 syl φ R = Scalar W
8 7 fveq2d φ 0 R = 0 Scalar W
9 3 8 eqtrid φ O = 0 Scalar W
10 9 fveq2d φ algSc W O = algSc W 0 Scalar W
11 eqid algSc W = algSc W
12 eqid Scalar W = Scalar W
13 1 ply1lmod R Ring W LMod
14 5 13 syl φ W LMod
15 1 ply1ring R Ring W Ring
16 5 15 syl φ W Ring
17 11 12 14 16 ascl0 φ algSc W 0 Scalar W = 0 W
18 10 17 eqtrd φ algSc W O = 0 W
19 2 fveq1i A O = algSc W O
20 18 19 4 3eqtr4g φ A O = 0 ˙