Metamath Proof Explorer


Theorem ply1ascl1

Description: The multiplicative identity scalar as a univariate polynomial. (Contributed by Thierry Arnoux, 20-Jan-2025)

Ref Expression
Hypotheses ply1ascl1.w W = Poly 1 R
ply1ascl1.a A = algSc W
ply1ascl1.i I = 1 R
ply1ascl1.1 1 ˙ = 1 W
ply1ascl1.r φ R Ring
Assertion ply1ascl1 φ A I = 1 ˙

Proof

Step Hyp Ref Expression
1 ply1ascl1.w W = Poly 1 R
2 ply1ascl1.a A = algSc W
3 ply1ascl1.i I = 1 R
4 ply1ascl1.1 1 ˙ = 1 W
5 ply1ascl1.r φ R Ring
6 1 ply1sca R Ring R = Scalar W
7 5 6 syl φ R = Scalar W
8 7 fveq2d φ 1 R = 1 Scalar W
9 3 8 eqtrid φ I = 1 Scalar W
10 9 fveq2d φ algSc W I = algSc W 1 Scalar W
11 eqid algSc W = algSc W
12 eqid Scalar W = Scalar W
13 1 ply1lmod R Ring W LMod
14 5 13 syl φ W LMod
15 1 ply1ring R Ring W Ring
16 5 15 syl φ W Ring
17 11 12 14 16 ascl1 φ algSc W 1 Scalar W = 1 W
18 10 17 eqtrd φ algSc W I = 1 W
19 2 fveq1i A I = algSc W I
20 18 19 4 3eqtr4g φ A I = 1 ˙