Metamath Proof Explorer


Theorem ply1asclunit

Description: A non-zero scalar polynomial over a field F is a unit. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ply1asclunit.1 P = Poly 1 F
ply1asclunit.2 A = algSc P
ply1asclunit.3 B = Base F
ply1asclunit.4 0 ˙ = 0 F
ply1asclunit.5 φ F Field
ply1asclunit.6 φ Y B
ply1asclunit.7 φ Y 0 ˙
Assertion ply1asclunit φ A Y Unit P

Proof

Step Hyp Ref Expression
1 ply1asclunit.1 P = Poly 1 F
2 ply1asclunit.2 A = algSc P
3 ply1asclunit.3 B = Base F
4 ply1asclunit.4 0 ˙ = 0 F
5 ply1asclunit.5 φ F Field
6 ply1asclunit.6 φ Y B
7 ply1asclunit.7 φ Y 0 ˙
8 5 fldcrngd φ F CRing
9 1 ply1assa F CRing P AssAlg
10 eqid Scalar P = Scalar P
11 2 10 asclrhm P AssAlg A Scalar P RingHom P
12 8 9 11 3syl φ A Scalar P RingHom P
13 1 ply1sca F Field F = Scalar P
14 5 13 syl φ F = Scalar P
15 14 oveq1d φ F RingHom P = Scalar P RingHom P
16 12 15 eleqtrrd φ A F RingHom P
17 5 flddrngd φ F DivRing
18 eqid Unit F = Unit F
19 3 18 4 drngunit F DivRing Y Unit F Y B Y 0 ˙
20 19 biimpar F DivRing Y B Y 0 ˙ Y Unit F
21 17 6 7 20 syl12anc φ Y Unit F
22 elrhmunit A F RingHom P Y Unit F A Y Unit P
23 16 21 22 syl2anc φ A Y Unit P