Metamath Proof Explorer


Theorem ply1bas

Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015) Remove hypothesis. (Revised by SN, 20-May-2025)

Ref Expression
Hypotheses ply1val.1 P = Poly 1 R
ply1bas.u U = Base P
Assertion ply1bas U = Base 1 𝑜 mPoly R

Proof

Step Hyp Ref Expression
1 ply1val.1 P = Poly 1 R
2 ply1bas.u U = Base P
3 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
4 eqid 1 𝑜 mPwSer R = 1 𝑜 mPwSer R
5 eqid Base 1 𝑜 mPoly R = Base 1 𝑜 mPoly R
6 eqid PwSer 1 R = PwSer 1 R
7 eqid Base PwSer 1 R = Base PwSer 1 R
8 6 7 4 psr1bas2 Base PwSer 1 R = Base 1 𝑜 mPwSer R
9 3 4 5 8 mplbasss Base 1 𝑜 mPoly R Base PwSer 1 R
10 1 6 ply1val P = PwSer 1 R 𝑠 Base 1 𝑜 mPoly R
11 10 7 ressbas2 Base 1 𝑜 mPoly R Base PwSer 1 R Base 1 𝑜 mPoly R = Base P
12 9 11 ax-mp Base 1 𝑜 mPoly R = Base P
13 2 12 eqtr4i U = Base 1 𝑜 mPoly R