Metamath Proof Explorer


Theorem ply1bascl2

Description: A univariate polynomial is a multivariate polynomial on one index. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses ply1bascl.p P = Poly 1 R
ply1bascl.b B = Base P
Assertion ply1bascl2 F B F Base 1 𝑜 mPoly R

Proof

Step Hyp Ref Expression
1 ply1bascl.p P = Poly 1 R
2 ply1bascl.b B = Base P
3 eqid PwSer 1 R = PwSer 1 R
4 1 3 2 ply1bas B = Base 1 𝑜 mPoly R
5 4 eleq2i F B F Base 1 𝑜 mPoly R
6 5 biimpi F B F Base 1 𝑜 mPoly R