Metamath Proof Explorer


Theorem ply1basf

Description: Univariate polynomial base set elements are functions. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses ply1rcl.p P = Poly 1 R
ply1rcl.b B = Base P
ply1basf.k K = Base R
Assertion ply1basf F B F : 0 1 𝑜 K

Proof

Step Hyp Ref Expression
1 ply1rcl.p P = Poly 1 R
2 ply1rcl.b B = Base P
3 ply1basf.k K = Base R
4 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
5 eqid Base 1 𝑜 mPoly R = Base 1 𝑜 mPoly R
6 psr1baslem 0 1 𝑜 = a 0 1 𝑜 | a -1 Fin
7 id F B F B
8 eqid PwSer 1 R = PwSer 1 R
9 1 8 2 ply1bas B = Base 1 𝑜 mPoly R
10 7 9 eleqtrdi F B F Base 1 𝑜 mPoly R
11 4 3 5 6 10 mplelf F B F : 0 1 𝑜 K