Metamath Proof Explorer


Theorem ply1basfvi

Description: Protection compatibility of the univariate polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Assertion ply1basfvi Base Poly 1 R = Base Poly 1 I R

Proof

Step Hyp Ref Expression
1 fvi R V I R = R
2 1 eqcomd R V R = I R
3 2 fveq2d R V Poly 1 R = Poly 1 I R
4 3 fveq2d R V Base Poly 1 R = Base Poly 1 I R
5 base0 = Base
6 00ply1bas = Base Poly 1
7 5 6 eqtr3i Base = Base Poly 1
8 fvprc ¬ R V Poly 1 R =
9 8 fveq2d ¬ R V Base Poly 1 R = Base
10 fvprc ¬ R V I R =
11 10 fveq2d ¬ R V Poly 1 I R = Poly 1
12 11 fveq2d ¬ R V Base Poly 1 I R = Base Poly 1
13 7 9 12 3eqtr4a ¬ R V Base Poly 1 R = Base Poly 1 I R
14 4 13 pm2.61i Base Poly 1 R = Base Poly 1 I R