Metamath Proof Explorer


Theorem ply1baspropd

Description: Property deduction for univariate polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses ply1baspropd.b1 φ B = Base R
ply1baspropd.b2 φ B = Base S
ply1baspropd.p φ x B y B x + R y = x + S y
Assertion ply1baspropd φ Base Poly 1 R = Base Poly 1 S

Proof

Step Hyp Ref Expression
1 ply1baspropd.b1 φ B = Base R
2 ply1baspropd.b2 φ B = Base S
3 ply1baspropd.p φ x B y B x + R y = x + S y
4 1 2 3 mplbaspropd φ Base 1 𝑜 mPoly R = Base 1 𝑜 mPoly S
5 eqid Poly 1 R = Poly 1 R
6 eqid PwSer 1 R = PwSer 1 R
7 eqid Base Poly 1 R = Base Poly 1 R
8 5 6 7 ply1bas Base Poly 1 R = Base 1 𝑜 mPoly R
9 eqid Poly 1 S = Poly 1 S
10 eqid PwSer 1 S = PwSer 1 S
11 eqid Base Poly 1 S = Base Poly 1 S
12 9 10 11 ply1bas Base Poly 1 S = Base 1 𝑜 mPoly S
13 4 8 12 3eqtr4g φ Base Poly 1 R = Base Poly 1 S