Metamath Proof Explorer


Theorem ply1chr

Description: The characteristic of a polynomial ring is the characteristic of the underlying ring. (Contributed by Thierry Arnoux, 24-Jul-2024)

Ref Expression
Hypothesis ply1chr.1 P = Poly 1 R
Assertion ply1chr R CRing chr P = chr R

Proof

Step Hyp Ref Expression
1 ply1chr.1 P = Poly 1 R
2 eqid od P = od P
3 eqid 1 P = 1 P
4 eqid chr P = chr P
5 2 3 4 chrval od P 1 P = chr P
6 eqid od R = od R
7 eqid 1 R = 1 R
8 eqid chr R = chr R
9 6 7 8 chrval od R 1 R = chr R
10 9 eqcomi chr R = od R 1 R
11 id R CRing R CRing
12 11 crnggrpd R CRing R Grp
13 crngring R CRing R Ring
14 eqid Base R = Base R
15 14 7 ringidcl R Ring 1 R Base R
16 13 15 syl R CRing 1 R Base R
17 8 chrcl R Ring chr R 0
18 13 17 syl R CRing chr R 0
19 eqid R = R
20 eqid 0 R = 0 R
21 14 6 19 20 odeq R Grp 1 R Base R chr R 0 chr R = od R 1 R n 0 chr R n n R 1 R = 0 R
22 12 16 18 21 syl3anc R CRing chr R = od R 1 R n 0 chr R n n R 1 R = 0 R
23 10 22 mpbii R CRing n 0 chr R n n R 1 R = 0 R
24 23 r19.21bi R CRing n 0 chr R n n R 1 R = 0 R
25 eqid algSc P = algSc P
26 13 adantr R CRing n 0 R Ring
27 12 grpmndd R CRing R Mnd
28 27 adantr R CRing n 0 R Mnd
29 simpr R CRing n 0 n 0
30 16 adantr R CRing n 0 1 R Base R
31 14 19 28 29 30 mulgnn0cld R CRing n 0 n R 1 R Base R
32 simpl R CRing n 0 R CRing
33 14 20 ring0cl R Ring 0 R Base R
34 32 13 33 3syl R CRing n 0 0 R Base R
35 1 14 25 26 31 34 ply1scleq R CRing n 0 algSc P n R 1 R = algSc P 0 R n R 1 R = 0 R
36 1 ply1sca R CRing R = Scalar P
37 36 adantr R CRing n 0 R = Scalar P
38 37 fveq2d R CRing n 0 R = Scalar P
39 38 oveqd R CRing n 0 n R 1 R = n Scalar P 1 R
40 39 fveq2d R CRing n 0 algSc P n R 1 R = algSc P n Scalar P 1 R
41 1 ply1assa R CRing P AssAlg
42 41 adantr R CRing n 0 P AssAlg
43 37 fveq2d R CRing n 0 Base R = Base Scalar P
44 30 43 eleqtrd R CRing n 0 1 R Base Scalar P
45 eqid Scalar P = Scalar P
46 eqid Base Scalar P = Base Scalar P
47 eqid P = P
48 eqid Scalar P = Scalar P
49 25 45 46 47 48 asclmulg P AssAlg n 0 1 R Base Scalar P algSc P n Scalar P 1 R = n P algSc P 1 R
50 42 29 44 49 syl3anc R CRing n 0 algSc P n Scalar P 1 R = n P algSc P 1 R
51 40 50 eqtrd R CRing n 0 algSc P n R 1 R = n P algSc P 1 R
52 eqid 0 P = 0 P
53 1 25 20 52 ply1scl0 R Ring algSc P 0 R = 0 P
54 32 13 53 3syl R CRing n 0 algSc P 0 R = 0 P
55 51 54 eqeq12d R CRing n 0 algSc P n R 1 R = algSc P 0 R n P algSc P 1 R = 0 P
56 24 35 55 3bitr2d R CRing n 0 chr R n n P algSc P 1 R = 0 P
57 56 ralrimiva R CRing n 0 chr R n n P algSc P 1 R = 0 P
58 1 ply1crng R CRing P CRing
59 58 crnggrpd R CRing P Grp
60 eqid Base P = Base P
61 1 25 14 60 ply1sclcl R Ring 1 R Base R algSc P 1 R Base P
62 13 16 61 syl2anc R CRing algSc P 1 R Base P
63 60 2 47 52 odeq P Grp algSc P 1 R Base P chr R 0 chr R = od P algSc P 1 R n 0 chr R n n P algSc P 1 R = 0 P
64 59 62 18 63 syl3anc R CRing chr R = od P algSc P 1 R n 0 chr R n n P algSc P 1 R = 0 P
65 57 64 mpbird R CRing chr R = od P algSc P 1 R
66 1 25 7 3 ply1scl1 R Ring algSc P 1 R = 1 P
67 66 fveq2d R Ring od P algSc P 1 R = od P 1 P
68 13 67 syl R CRing od P algSc P 1 R = od P 1 P
69 65 68 eqtr2d R CRing od P 1 P = chr R
70 5 69 eqtr3id R CRing chr P = chr R