Metamath Proof Explorer


Theorem ply1coe

Description: Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 7-Oct-2019)

Ref Expression
Hypotheses ply1coe.p P = Poly 1 R
ply1coe.x X = var 1 R
ply1coe.b B = Base P
ply1coe.n · ˙ = P
ply1coe.m M = mulGrp P
ply1coe.e × ˙ = M
ply1coe.a A = coe 1 K
Assertion ply1coe R Ring K B K = P k 0 A k · ˙ k × ˙ X

Proof

Step Hyp Ref Expression
1 ply1coe.p P = Poly 1 R
2 ply1coe.x X = var 1 R
3 ply1coe.b B = Base P
4 ply1coe.n · ˙ = P
5 ply1coe.m M = mulGrp P
6 ply1coe.e × ˙ = M
7 ply1coe.a A = coe 1 K
8 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
9 psr1baslem 0 1 𝑜 = d 0 1 𝑜 | d -1 Fin
10 eqid 0 R = 0 R
11 eqid 1 R = 1 R
12 1onn 1 𝑜 ω
13 12 a1i R Ring K B 1 𝑜 ω
14 1 3 ply1bas B = Base 1 𝑜 mPoly R
15 1 8 4 ply1vsca · ˙ = 1 𝑜 mPoly R
16 simpl R Ring K B R Ring
17 simpr R Ring K B K B
18 8 9 10 11 13 14 15 16 17 mplcoe1 R Ring K B K = 1 𝑜 mPoly R a 0 1 𝑜 K a · ˙ b 0 1 𝑜 if b = a 1 R 0 R
19 7 fvcoe1 K B a 0 1 𝑜 K a = A a
20 19 adantll R Ring K B a 0 1 𝑜 K a = A a
21 12 a1i R Ring K B a 0 1 𝑜 1 𝑜 ω
22 eqid mulGrp 1 𝑜 mPoly R = mulGrp 1 𝑜 mPoly R
23 eqid mulGrp 1 𝑜 mPoly R = mulGrp 1 𝑜 mPoly R
24 eqid 1 𝑜 mVar R = 1 𝑜 mVar R
25 simpll R Ring K B a 0 1 𝑜 R Ring
26 simpr R Ring K B a 0 1 𝑜 a 0 1 𝑜
27 eqidd R Ring K B a 0 1 𝑜 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R
28 0ex V
29 fveq2 b = 1 𝑜 mVar R b = 1 𝑜 mVar R
30 29 oveq1d b = 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R
31 29 oveq2d b = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R
32 30 31 eqeq12d b = 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R
33 28 32 ralsn b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R
34 27 33 sylibr R Ring K B a 0 1 𝑜 b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
35 fveq2 x = 1 𝑜 mVar R x = 1 𝑜 mVar R
36 35 oveq2d x = 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R
37 35 oveq1d x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
38 36 37 eqeq12d x = 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
39 38 ralbidv x = b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
40 28 39 ralsn x b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
41 34 40 sylibr R Ring K B a 0 1 𝑜 x b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
42 df1o2 1 𝑜 =
43 42 raleqi b 1 𝑜 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
44 42 43 raleqbii x 1 𝑜 b 1 𝑜 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b x b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
45 41 44 sylibr R Ring K B a 0 1 𝑜 x 1 𝑜 b 1 𝑜 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
46 8 9 10 11 21 22 23 24 25 26 45 mplcoe5 R Ring K B a 0 1 𝑜 b 0 1 𝑜 if b = a 1 R 0 R = mulGrp 1 𝑜 mPoly R c 1 𝑜 a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c
47 42 mpteq1i c 1 𝑜 a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c = c a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c
48 47 oveq2i mulGrp 1 𝑜 mPoly R c 1 𝑜 a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c = mulGrp 1 𝑜 mPoly R c a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c
49 8 mplring 1 𝑜 ω R Ring 1 𝑜 mPoly R Ring
50 12 49 mpan R Ring 1 𝑜 mPoly R Ring
51 22 ringmgp 1 𝑜 mPoly R Ring mulGrp 1 𝑜 mPoly R Mnd
52 50 51 syl R Ring mulGrp 1 𝑜 mPoly R Mnd
53 52 ad2antrr R Ring K B a 0 1 𝑜 mulGrp 1 𝑜 mPoly R Mnd
54 28 a1i R Ring K B a 0 1 𝑜 V
55 22 14 mgpbas B = Base mulGrp 1 𝑜 mPoly R
56 55 a1i R Ring K B B = Base mulGrp 1 𝑜 mPoly R
57 5 3 mgpbas B = Base M
58 57 a1i R Ring K B B = Base M
59 ssv B V
60 59 a1i R Ring K B B V
61 ovexd R Ring K B a V b V a + mulGrp 1 𝑜 mPoly R b V
62 eqid P = P
63 1 8 62 ply1mulr P = 1 𝑜 mPoly R
64 22 63 mgpplusg P = + mulGrp 1 𝑜 mPoly R
65 5 62 mgpplusg P = + M
66 64 65 eqtr3i + mulGrp 1 𝑜 mPoly R = + M
67 66 oveqi a + mulGrp 1 𝑜 mPoly R b = a + M b
68 67 a1i R Ring K B a V b V a + mulGrp 1 𝑜 mPoly R b = a + M b
69 23 6 56 58 60 61 68 mulgpropd R Ring K B mulGrp 1 𝑜 mPoly R = × ˙
70 69 oveqd R Ring K B a mulGrp 1 𝑜 mPoly R X = a × ˙ X
71 70 adantr R Ring K B a 0 1 𝑜 a mulGrp 1 𝑜 mPoly R X = a × ˙ X
72 1 ply1ring R Ring P Ring
73 5 ringmgp P Ring M Mnd
74 72 73 syl R Ring M Mnd
75 74 ad2antrr R Ring K B a 0 1 𝑜 M Mnd
76 elmapi a 0 1 𝑜 a : 1 𝑜 0
77 0lt1o 1 𝑜
78 ffvelcdm a : 1 𝑜 0 1 𝑜 a 0
79 76 77 78 sylancl a 0 1 𝑜 a 0
80 79 adantl R Ring K B a 0 1 𝑜 a 0
81 2 1 3 vr1cl R Ring X B
82 81 ad2antrr R Ring K B a 0 1 𝑜 X B
83 57 6 75 80 82 mulgnn0cld R Ring K B a 0 1 𝑜 a × ˙ X B
84 71 83 eqeltrd R Ring K B a 0 1 𝑜 a mulGrp 1 𝑜 mPoly R X B
85 fveq2 c = a c = a
86 fveq2 c = 1 𝑜 mVar R c = 1 𝑜 mVar R
87 2 vr1val X = 1 𝑜 mVar R
88 86 87 eqtr4di c = 1 𝑜 mVar R c = X
89 85 88 oveq12d c = a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c = a mulGrp 1 𝑜 mPoly R X
90 55 89 gsumsn mulGrp 1 𝑜 mPoly R Mnd V a mulGrp 1 𝑜 mPoly R X B mulGrp 1 𝑜 mPoly R c a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c = a mulGrp 1 𝑜 mPoly R X
91 53 54 84 90 syl3anc R Ring K B a 0 1 𝑜 mulGrp 1 𝑜 mPoly R c a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c = a mulGrp 1 𝑜 mPoly R X
92 48 91 eqtrid R Ring K B a 0 1 𝑜 mulGrp 1 𝑜 mPoly R c 1 𝑜 a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c = a mulGrp 1 𝑜 mPoly R X
93 46 92 71 3eqtrd R Ring K B a 0 1 𝑜 b 0 1 𝑜 if b = a 1 R 0 R = a × ˙ X
94 20 93 oveq12d R Ring K B a 0 1 𝑜 K a · ˙ b 0 1 𝑜 if b = a 1 R 0 R = A a · ˙ a × ˙ X
95 94 mpteq2dva R Ring K B a 0 1 𝑜 K a · ˙ b 0 1 𝑜 if b = a 1 R 0 R = a 0 1 𝑜 A a · ˙ a × ˙ X
96 95 oveq2d R Ring K B 1 𝑜 mPoly R a 0 1 𝑜 K a · ˙ b 0 1 𝑜 if b = a 1 R 0 R = 1 𝑜 mPoly R a 0 1 𝑜 A a · ˙ a × ˙ X
97 nn0ex 0 V
98 97 mptex k 0 A k · ˙ k × ˙ X V
99 98 a1i R Ring K B k 0 A k · ˙ k × ˙ X V
100 1 fvexi P V
101 100 a1i R Ring K B P V
102 ovexd R Ring K B 1 𝑜 mPoly R V
103 3 14 eqtr3i Base P = Base 1 𝑜 mPoly R
104 103 a1i R Ring K B Base P = Base 1 𝑜 mPoly R
105 eqid + P = + P
106 1 8 105 ply1plusg + P = + 1 𝑜 mPoly R
107 106 a1i R Ring K B + P = + 1 𝑜 mPoly R
108 99 101 102 104 107 gsumpropd R Ring K B P k 0 A k · ˙ k × ˙ X = 1 𝑜 mPoly R k 0 A k · ˙ k × ˙ X
109 eqid 0 P = 0 P
110 8 1 109 ply1mpl0 0 P = 0 1 𝑜 mPoly R
111 8 mpllmod 1 𝑜 ω R Ring 1 𝑜 mPoly R LMod
112 12 16 111 sylancr R Ring K B 1 𝑜 mPoly R LMod
113 lmodcmn 1 𝑜 mPoly R LMod 1 𝑜 mPoly R CMnd
114 112 113 syl R Ring K B 1 𝑜 mPoly R CMnd
115 97 a1i R Ring K B 0 V
116 1 ply1lmod R Ring P LMod
117 116 ad2antrr R Ring K B k 0 P LMod
118 eqid Base R = Base R
119 7 3 1 118 coe1f K B A : 0 Base R
120 119 adantl R Ring K B A : 0 Base R
121 120 ffvelcdmda R Ring K B k 0 A k Base R
122 1 ply1sca R Ring R = Scalar P
123 122 eqcomd R Ring Scalar P = R
124 123 ad2antrr R Ring K B k 0 Scalar P = R
125 124 fveq2d R Ring K B k 0 Base Scalar P = Base R
126 121 125 eleqtrrd R Ring K B k 0 A k Base Scalar P
127 74 ad2antrr R Ring K B k 0 M Mnd
128 simpr R Ring K B k 0 k 0
129 81 ad2antrr R Ring K B k 0 X B
130 57 6 127 128 129 mulgnn0cld R Ring K B k 0 k × ˙ X B
131 eqid Scalar P = Scalar P
132 eqid Base Scalar P = Base Scalar P
133 3 131 4 132 lmodvscl P LMod A k Base Scalar P k × ˙ X B A k · ˙ k × ˙ X B
134 117 126 130 133 syl3anc R Ring K B k 0 A k · ˙ k × ˙ X B
135 134 fmpttd R Ring K B k 0 A k · ˙ k × ˙ X : 0 B
136 1 2 3 4 5 6 7 ply1coefsupp R Ring K B finSupp 0 P k 0 A k · ˙ k × ˙ X
137 eqid a 0 1 𝑜 a = a 0 1 𝑜 a
138 42 97 28 137 mapsnf1o2 a 0 1 𝑜 a : 0 1 𝑜 1-1 onto 0
139 138 a1i R Ring K B a 0 1 𝑜 a : 0 1 𝑜 1-1 onto 0
140 14 110 114 115 135 136 139 gsumf1o R Ring K B 1 𝑜 mPoly R k 0 A k · ˙ k × ˙ X = 1 𝑜 mPoly R k 0 A k · ˙ k × ˙ X a 0 1 𝑜 a
141 eqidd R Ring K B a 0 1 𝑜 a = a 0 1 𝑜 a
142 eqidd R Ring K B k 0 A k · ˙ k × ˙ X = k 0 A k · ˙ k × ˙ X
143 fveq2 k = a A k = A a
144 oveq1 k = a k × ˙ X = a × ˙ X
145 143 144 oveq12d k = a A k · ˙ k × ˙ X = A a · ˙ a × ˙ X
146 80 141 142 145 fmptco R Ring K B k 0 A k · ˙ k × ˙ X a 0 1 𝑜 a = a 0 1 𝑜 A a · ˙ a × ˙ X
147 146 oveq2d R Ring K B 1 𝑜 mPoly R k 0 A k · ˙ k × ˙ X a 0 1 𝑜 a = 1 𝑜 mPoly R a 0 1 𝑜 A a · ˙ a × ˙ X
148 108 140 147 3eqtrrd R Ring K B 1 𝑜 mPoly R a 0 1 𝑜 A a · ˙ a × ˙ X = P k 0 A k · ˙ k × ˙ X
149 18 96 148 3eqtrd R Ring K B K = P k 0 A k · ˙ k × ˙ X