Metamath Proof Explorer


Theorem ply1coe

Description: Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 7-Oct-2019)

Ref Expression
Hypotheses ply1coe.p P = Poly 1 R
ply1coe.x X = var 1 R
ply1coe.b B = Base P
ply1coe.n · ˙ = P
ply1coe.m M = mulGrp P
ply1coe.e × ˙ = M
ply1coe.a A = coe 1 K
Assertion ply1coe R Ring K B K = P k 0 A k · ˙ k × ˙ X

Proof

Step Hyp Ref Expression
1 ply1coe.p P = Poly 1 R
2 ply1coe.x X = var 1 R
3 ply1coe.b B = Base P
4 ply1coe.n · ˙ = P
5 ply1coe.m M = mulGrp P
6 ply1coe.e × ˙ = M
7 ply1coe.a A = coe 1 K
8 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
9 psr1baslem 0 1 𝑜 = d 0 1 𝑜 | d -1 Fin
10 eqid 0 R = 0 R
11 eqid 1 R = 1 R
12 1onn 1 𝑜 ω
13 12 a1i R Ring K B 1 𝑜 ω
14 eqid PwSer 1 R = PwSer 1 R
15 1 14 3 ply1bas B = Base 1 𝑜 mPoly R
16 1 8 4 ply1vsca · ˙ = 1 𝑜 mPoly R
17 simpl R Ring K B R Ring
18 simpr R Ring K B K B
19 8 9 10 11 13 15 16 17 18 mplcoe1 R Ring K B K = 1 𝑜 mPoly R a 0 1 𝑜 K a · ˙ b 0 1 𝑜 if b = a 1 R 0 R
20 7 fvcoe1 K B a 0 1 𝑜 K a = A a
21 20 adantll R Ring K B a 0 1 𝑜 K a = A a
22 12 a1i R Ring K B a 0 1 𝑜 1 𝑜 ω
23 eqid mulGrp 1 𝑜 mPoly R = mulGrp 1 𝑜 mPoly R
24 eqid mulGrp 1 𝑜 mPoly R = mulGrp 1 𝑜 mPoly R
25 eqid 1 𝑜 mVar R = 1 𝑜 mVar R
26 simpll R Ring K B a 0 1 𝑜 R Ring
27 simpr R Ring K B a 0 1 𝑜 a 0 1 𝑜
28 eqidd R Ring K B a 0 1 𝑜 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R
29 0ex V
30 fveq2 b = 1 𝑜 mVar R b = 1 𝑜 mVar R
31 30 oveq1d b = 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R
32 30 oveq2d b = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R
33 31 32 eqeq12d b = 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R
34 29 33 ralsn b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R
35 28 34 sylibr R Ring K B a 0 1 𝑜 b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
36 fveq2 x = 1 𝑜 mVar R x = 1 𝑜 mVar R
37 36 oveq2d x = 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R
38 36 oveq1d x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
39 37 38 eqeq12d x = 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
40 39 ralbidv x = b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
41 29 40 ralsn x b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R = 1 𝑜 mVar R + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
42 35 41 sylibr R Ring K B a 0 1 𝑜 x b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
43 df1o2 1 𝑜 =
44 43 raleqi b 1 𝑜 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
45 43 44 raleqbii x 1 𝑜 b 1 𝑜 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b x b 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
46 42 45 sylibr R Ring K B a 0 1 𝑜 x 1 𝑜 b 1 𝑜 1 𝑜 mVar R b + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R x = 1 𝑜 mVar R x + mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R b
47 8 9 10 11 22 23 24 25 26 27 46 mplcoe5 R Ring K B a 0 1 𝑜 b 0 1 𝑜 if b = a 1 R 0 R = mulGrp 1 𝑜 mPoly R c 1 𝑜 a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c
48 43 mpteq1i c 1 𝑜 a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c = c a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c
49 48 oveq2i mulGrp 1 𝑜 mPoly R c 1 𝑜 a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c = mulGrp 1 𝑜 mPoly R c a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c
50 8 mplring 1 𝑜 ω R Ring 1 𝑜 mPoly R Ring
51 12 50 mpan R Ring 1 𝑜 mPoly R Ring
52 23 ringmgp 1 𝑜 mPoly R Ring mulGrp 1 𝑜 mPoly R Mnd
53 51 52 syl R Ring mulGrp 1 𝑜 mPoly R Mnd
54 53 ad2antrr R Ring K B a 0 1 𝑜 mulGrp 1 𝑜 mPoly R Mnd
55 29 a1i R Ring K B a 0 1 𝑜 V
56 23 15 mgpbas B = Base mulGrp 1 𝑜 mPoly R
57 56 a1i R Ring K B B = Base mulGrp 1 𝑜 mPoly R
58 5 3 mgpbas B = Base M
59 58 a1i R Ring K B B = Base M
60 ssv B V
61 60 a1i R Ring K B B V
62 ovexd R Ring K B a V b V a + mulGrp 1 𝑜 mPoly R b V
63 eqid P = P
64 1 8 63 ply1mulr P = 1 𝑜 mPoly R
65 23 64 mgpplusg P = + mulGrp 1 𝑜 mPoly R
66 5 63 mgpplusg P = + M
67 65 66 eqtr3i + mulGrp 1 𝑜 mPoly R = + M
68 67 oveqi a + mulGrp 1 𝑜 mPoly R b = a + M b
69 68 a1i R Ring K B a V b V a + mulGrp 1 𝑜 mPoly R b = a + M b
70 24 6 57 59 61 62 69 mulgpropd R Ring K B mulGrp 1 𝑜 mPoly R = × ˙
71 70 oveqd R Ring K B a mulGrp 1 𝑜 mPoly R X = a × ˙ X
72 71 adantr R Ring K B a 0 1 𝑜 a mulGrp 1 𝑜 mPoly R X = a × ˙ X
73 1 ply1ring R Ring P Ring
74 5 ringmgp P Ring M Mnd
75 73 74 syl R Ring M Mnd
76 75 ad2antrr R Ring K B a 0 1 𝑜 M Mnd
77 elmapi a 0 1 𝑜 a : 1 𝑜 0
78 0lt1o 1 𝑜
79 ffvelrn a : 1 𝑜 0 1 𝑜 a 0
80 77 78 79 sylancl a 0 1 𝑜 a 0
81 80 adantl R Ring K B a 0 1 𝑜 a 0
82 2 1 3 vr1cl R Ring X B
83 82 ad2antrr R Ring K B a 0 1 𝑜 X B
84 58 6 mulgnn0cl M Mnd a 0 X B a × ˙ X B
85 76 81 83 84 syl3anc R Ring K B a 0 1 𝑜 a × ˙ X B
86 72 85 eqeltrd R Ring K B a 0 1 𝑜 a mulGrp 1 𝑜 mPoly R X B
87 fveq2 c = a c = a
88 fveq2 c = 1 𝑜 mVar R c = 1 𝑜 mVar R
89 2 vr1val X = 1 𝑜 mVar R
90 88 89 eqtr4di c = 1 𝑜 mVar R c = X
91 87 90 oveq12d c = a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c = a mulGrp 1 𝑜 mPoly R X
92 56 91 gsumsn mulGrp 1 𝑜 mPoly R Mnd V a mulGrp 1 𝑜 mPoly R X B mulGrp 1 𝑜 mPoly R c a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c = a mulGrp 1 𝑜 mPoly R X
93 54 55 86 92 syl3anc R Ring K B a 0 1 𝑜 mulGrp 1 𝑜 mPoly R c a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c = a mulGrp 1 𝑜 mPoly R X
94 49 93 eqtrid R Ring K B a 0 1 𝑜 mulGrp 1 𝑜 mPoly R c 1 𝑜 a c mulGrp 1 𝑜 mPoly R 1 𝑜 mVar R c = a mulGrp 1 𝑜 mPoly R X
95 47 94 72 3eqtrd R Ring K B a 0 1 𝑜 b 0 1 𝑜 if b = a 1 R 0 R = a × ˙ X
96 21 95 oveq12d R Ring K B a 0 1 𝑜 K a · ˙ b 0 1 𝑜 if b = a 1 R 0 R = A a · ˙ a × ˙ X
97 96 mpteq2dva R Ring K B a 0 1 𝑜 K a · ˙ b 0 1 𝑜 if b = a 1 R 0 R = a 0 1 𝑜 A a · ˙ a × ˙ X
98 97 oveq2d R Ring K B 1 𝑜 mPoly R a 0 1 𝑜 K a · ˙ b 0 1 𝑜 if b = a 1 R 0 R = 1 𝑜 mPoly R a 0 1 𝑜 A a · ˙ a × ˙ X
99 nn0ex 0 V
100 99 mptex k 0 A k · ˙ k × ˙ X V
101 100 a1i R Ring K B k 0 A k · ˙ k × ˙ X V
102 1 fvexi P V
103 102 a1i R Ring K B P V
104 ovexd R Ring K B 1 𝑜 mPoly R V
105 3 15 eqtr3i Base P = Base 1 𝑜 mPoly R
106 105 a1i R Ring K B Base P = Base 1 𝑜 mPoly R
107 eqid + P = + P
108 1 8 107 ply1plusg + P = + 1 𝑜 mPoly R
109 108 a1i R Ring K B + P = + 1 𝑜 mPoly R
110 101 103 104 106 109 gsumpropd R Ring K B P k 0 A k · ˙ k × ˙ X = 1 𝑜 mPoly R k 0 A k · ˙ k × ˙ X
111 eqid 0 P = 0 P
112 8 1 111 ply1mpl0 0 P = 0 1 𝑜 mPoly R
113 8 mpllmod 1 𝑜 ω R Ring 1 𝑜 mPoly R LMod
114 12 17 113 sylancr R Ring K B 1 𝑜 mPoly R LMod
115 lmodcmn 1 𝑜 mPoly R LMod 1 𝑜 mPoly R CMnd
116 114 115 syl R Ring K B 1 𝑜 mPoly R CMnd
117 99 a1i R Ring K B 0 V
118 1 ply1lmod R Ring P LMod
119 118 ad2antrr R Ring K B k 0 P LMod
120 eqid Base R = Base R
121 7 3 1 120 coe1f K B A : 0 Base R
122 121 adantl R Ring K B A : 0 Base R
123 122 ffvelrnda R Ring K B k 0 A k Base R
124 1 ply1sca R Ring R = Scalar P
125 124 eqcomd R Ring Scalar P = R
126 125 ad2antrr R Ring K B k 0 Scalar P = R
127 126 fveq2d R Ring K B k 0 Base Scalar P = Base R
128 123 127 eleqtrrd R Ring K B k 0 A k Base Scalar P
129 75 ad2antrr R Ring K B k 0 M Mnd
130 simpr R Ring K B k 0 k 0
131 82 ad2antrr R Ring K B k 0 X B
132 58 6 mulgnn0cl M Mnd k 0 X B k × ˙ X B
133 129 130 131 132 syl3anc R Ring K B k 0 k × ˙ X B
134 eqid Scalar P = Scalar P
135 eqid Base Scalar P = Base Scalar P
136 3 134 4 135 lmodvscl P LMod A k Base Scalar P k × ˙ X B A k · ˙ k × ˙ X B
137 119 128 133 136 syl3anc R Ring K B k 0 A k · ˙ k × ˙ X B
138 137 fmpttd R Ring K B k 0 A k · ˙ k × ˙ X : 0 B
139 1 2 3 4 5 6 7 ply1coefsupp R Ring K B finSupp 0 P k 0 A k · ˙ k × ˙ X
140 eqid a 0 1 𝑜 a = a 0 1 𝑜 a
141 43 99 29 140 mapsnf1o2 a 0 1 𝑜 a : 0 1 𝑜 1-1 onto 0
142 141 a1i R Ring K B a 0 1 𝑜 a : 0 1 𝑜 1-1 onto 0
143 15 112 116 117 138 139 142 gsumf1o R Ring K B 1 𝑜 mPoly R k 0 A k · ˙ k × ˙ X = 1 𝑜 mPoly R k 0 A k · ˙ k × ˙ X a 0 1 𝑜 a
144 eqidd R Ring K B a 0 1 𝑜 a = a 0 1 𝑜 a
145 eqidd R Ring K B k 0 A k · ˙ k × ˙ X = k 0 A k · ˙ k × ˙ X
146 fveq2 k = a A k = A a
147 oveq1 k = a k × ˙ X = a × ˙ X
148 146 147 oveq12d k = a A k · ˙ k × ˙ X = A a · ˙ a × ˙ X
149 81 144 145 148 fmptco R Ring K B k 0 A k · ˙ k × ˙ X a 0 1 𝑜 a = a 0 1 𝑜 A a · ˙ a × ˙ X
150 149 oveq2d R Ring K B 1 𝑜 mPoly R k 0 A k · ˙ k × ˙ X a 0 1 𝑜 a = 1 𝑜 mPoly R a 0 1 𝑜 A a · ˙ a × ˙ X
151 110 143 150 3eqtrrd R Ring K B 1 𝑜 mPoly R a 0 1 𝑜 A a · ˙ a × ˙ X = P k 0 A k · ˙ k × ˙ X
152 19 98 151 3eqtrd R Ring K B K = P k 0 A k · ˙ k × ˙ X