Description: The decomposition of a univariate polynomial is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1coefsupp.p | |
|
ply1coefsupp.x | |
||
ply1coefsupp.b | |
||
ply1coefsupp.n | |
||
ply1coefsupp.m | |
||
ply1coefsupp.e | |
||
ply1coefsupp.a | |
||
Assertion | ply1coefsupp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1coefsupp.p | |
|
2 | ply1coefsupp.x | |
|
3 | ply1coefsupp.b | |
|
4 | ply1coefsupp.n | |
|
5 | ply1coefsupp.m | |
|
6 | ply1coefsupp.e | |
|
7 | ply1coefsupp.a | |
|
8 | eqid | |
|
9 | 1 | ply1lmod | |
10 | 9 | adantr | |
11 | nn0ex | |
|
12 | 11 | a1i | |
13 | 5 3 | mgpbas | |
14 | 1 | ply1ring | |
15 | 5 | ringmgp | |
16 | 14 15 | syl | |
17 | 16 | ad2antrr | |
18 | simpr | |
|
19 | 2 1 3 | vr1cl | |
20 | 19 | ad2antrr | |
21 | 13 6 17 18 20 | mulgnn0cld | |
22 | eqid | |
|
23 | 7 3 1 22 | coe1f | |
24 | 23 | adantl | |
25 | eqid | |
|
26 | 7 3 1 25 | coe1sfi | |
27 | 26 | adantl | |
28 | 1 | ply1sca | |
29 | 28 | eqcomd | |
30 | 29 | adantr | |
31 | 30 | fveq2d | |
32 | 27 31 | breqtrrd | |
33 | 3 8 4 10 12 21 24 32 | mptscmfsuppd | |