Metamath Proof Explorer


Theorem ply1coefsupp

Description: The decomposition of a univariate polynomial is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019)

Ref Expression
Hypotheses ply1coefsupp.p P=Poly1R
ply1coefsupp.x X=var1R
ply1coefsupp.b B=BaseP
ply1coefsupp.n ·˙=P
ply1coefsupp.m M=mulGrpP
ply1coefsupp.e ×˙=M
ply1coefsupp.a A=coe1K
Assertion ply1coefsupp RRingKBfinSupp0Pk0Ak·˙k×˙X

Proof

Step Hyp Ref Expression
1 ply1coefsupp.p P=Poly1R
2 ply1coefsupp.x X=var1R
3 ply1coefsupp.b B=BaseP
4 ply1coefsupp.n ·˙=P
5 ply1coefsupp.m M=mulGrpP
6 ply1coefsupp.e ×˙=M
7 ply1coefsupp.a A=coe1K
8 eqid ScalarP=ScalarP
9 1 ply1lmod RRingPLMod
10 9 adantr RRingKBPLMod
11 nn0ex 0V
12 11 a1i RRingKB0V
13 5 3 mgpbas B=BaseM
14 1 ply1ring RRingPRing
15 5 ringmgp PRingMMnd
16 14 15 syl RRingMMnd
17 16 ad2antrr RRingKBk0MMnd
18 simpr RRingKBk0k0
19 2 1 3 vr1cl RRingXB
20 19 ad2antrr RRingKBk0XB
21 13 6 17 18 20 mulgnn0cld RRingKBk0k×˙XB
22 eqid BaseR=BaseR
23 7 3 1 22 coe1f KBA:0BaseR
24 23 adantl RRingKBA:0BaseR
25 eqid 0R=0R
26 7 3 1 25 coe1sfi KBfinSupp0RA
27 26 adantl RRingKBfinSupp0RA
28 1 ply1sca RRingR=ScalarP
29 28 eqcomd RRingScalarP=R
30 29 adantr RRingKBScalarP=R
31 30 fveq2d RRingKB0ScalarP=0R
32 27 31 breqtrrd RRingKBfinSupp0ScalarPA
33 3 8 4 10 12 21 24 32 mptscmfsuppd RRingKBfinSupp0Pk0Ak·˙k×˙X