Metamath Proof Explorer


Theorem ply1coefsupp

Description: The decomposition of a univariate polynomial is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019)

Ref Expression
Hypotheses ply1coefsupp.p P = Poly 1 R
ply1coefsupp.x X = var 1 R
ply1coefsupp.b B = Base P
ply1coefsupp.n · ˙ = P
ply1coefsupp.m M = mulGrp P
ply1coefsupp.e × ˙ = M
ply1coefsupp.a A = coe 1 K
Assertion ply1coefsupp R Ring K B finSupp 0 P k 0 A k · ˙ k × ˙ X

Proof

Step Hyp Ref Expression
1 ply1coefsupp.p P = Poly 1 R
2 ply1coefsupp.x X = var 1 R
3 ply1coefsupp.b B = Base P
4 ply1coefsupp.n · ˙ = P
5 ply1coefsupp.m M = mulGrp P
6 ply1coefsupp.e × ˙ = M
7 ply1coefsupp.a A = coe 1 K
8 eqid Scalar P = Scalar P
9 1 ply1lmod R Ring P LMod
10 9 adantr R Ring K B P LMod
11 nn0ex 0 V
12 11 a1i R Ring K B 0 V
13 5 3 mgpbas B = Base M
14 1 ply1ring R Ring P Ring
15 5 ringmgp P Ring M Mnd
16 14 15 syl R Ring M Mnd
17 16 ad2antrr R Ring K B k 0 M Mnd
18 simpr R Ring K B k 0 k 0
19 2 1 3 vr1cl R Ring X B
20 19 ad2antrr R Ring K B k 0 X B
21 13 6 17 18 20 mulgnn0cld R Ring K B k 0 k × ˙ X B
22 eqid Base R = Base R
23 7 3 1 22 coe1f K B A : 0 Base R
24 23 adantl R Ring K B A : 0 Base R
25 eqid 0 R = 0 R
26 7 3 1 25 coe1sfi K B finSupp 0 R A
27 26 adantl R Ring K B finSupp 0 R A
28 1 ply1sca R Ring R = Scalar P
29 28 eqcomd R Ring Scalar P = R
30 29 adantr R Ring K B Scalar P = R
31 30 fveq2d R Ring K B 0 Scalar P = 0 R
32 27 31 breqtrrd R Ring K B finSupp 0 Scalar P A
33 3 8 4 10 12 21 24 32 mptscmfsuppd R Ring K B finSupp 0 P k 0 A k · ˙ k × ˙ X