Metamath Proof Explorer


Theorem ply1degltdim

Description: The space S of the univariate polynomials of degree less than N has dimension N . (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses ply1degltdim.p P = Poly 1 R
ply1degltdim.d D = deg 1 R
ply1degltdim.s S = D -1 −∞ N
ply1degltdim.n φ N 0
ply1degltdim.r φ R DivRing
ply1degltdim.e E = P 𝑠 S
Assertion ply1degltdim φ dim E = N

Proof

Step Hyp Ref Expression
1 ply1degltdim.p P = Poly 1 R
2 ply1degltdim.d D = deg 1 R
3 ply1degltdim.s S = D -1 −∞ N
4 ply1degltdim.n φ N 0
5 ply1degltdim.r φ R DivRing
6 ply1degltdim.e E = P 𝑠 S
7 1 5 ply1lvec φ P LVec
8 5 drngringd φ R Ring
9 1 2 3 4 8 ply1degltlss φ S LSubSp P
10 eqid LSubSp P = LSubSp P
11 6 10 lsslvec P LVec S LSubSp P E LVec
12 7 9 11 syl2anc φ E LVec
13 oveq1 k = n k mulGrp P var 1 R = n mulGrp P var 1 R
14 13 cbvmptv k 0 ..^ N k mulGrp P var 1 R = n 0 ..^ N n mulGrp P var 1 R
15 1 2 3 4 5 6 14 ply1degltdimlem φ ran k 0 ..^ N k mulGrp P var 1 R LBasis E
16 eqid Base P = Base P
17 2 1 16 deg1xrf D : Base P *
18 ffn D : Base P * D Fn Base P
19 17 18 mp1i φ n 0 ..^ N D Fn Base P
20 eqid mulGrp P = mulGrp P
21 20 16 mgpbas Base P = Base mulGrp P
22 eqid mulGrp P = mulGrp P
23 1 ply1ring R Ring P Ring
24 20 ringmgp P Ring mulGrp P Mnd
25 8 23 24 3syl φ mulGrp P Mnd
26 25 adantr φ n 0 ..^ N mulGrp P Mnd
27 elfzonn0 n 0 ..^ N n 0
28 27 adantl φ n 0 ..^ N n 0
29 eqid var 1 R = var 1 R
30 29 1 16 vr1cl R Ring var 1 R Base P
31 8 30 syl φ var 1 R Base P
32 31 adantr φ n 0 ..^ N var 1 R Base P
33 21 22 26 28 32 mulgnn0cld φ n 0 ..^ N n mulGrp P var 1 R Base P
34 mnfxr −∞ *
35 34 a1i φ n 0 ..^ N −∞ *
36 4 nn0red φ N
37 36 rexrd φ N *
38 37 adantr φ n 0 ..^ N N *
39 2 1 16 deg1xrcl n mulGrp P var 1 R Base P D n mulGrp P var 1 R *
40 33 39 syl φ n 0 ..^ N D n mulGrp P var 1 R *
41 40 mnfled φ n 0 ..^ N −∞ D n mulGrp P var 1 R
42 27 nn0red n 0 ..^ N n
43 42 rexrd n 0 ..^ N n *
44 43 adantl φ n 0 ..^ N n *
45 2 1 29 20 22 deg1pwle R Ring n 0 D n mulGrp P var 1 R n
46 8 27 45 syl2an φ n 0 ..^ N D n mulGrp P var 1 R n
47 elfzolt2 n 0 ..^ N n < N
48 47 adantl φ n 0 ..^ N n < N
49 40 44 38 46 48 xrlelttrd φ n 0 ..^ N D n mulGrp P var 1 R < N
50 35 38 40 41 49 elicod φ n 0 ..^ N D n mulGrp P var 1 R −∞ N
51 19 33 50 elpreimad φ n 0 ..^ N n mulGrp P var 1 R D -1 −∞ N
52 51 3 eleqtrrdi φ n 0 ..^ N n mulGrp P var 1 R S
53 16 10 lssss S LSubSp P S Base P
54 6 16 ressbas2 S Base P S = Base E
55 9 53 54 3syl φ S = Base E
56 55 adantr φ n 0 ..^ N S = Base E
57 52 56 eleqtrd φ n 0 ..^ N n mulGrp P var 1 R Base E
58 57 14 fmptd φ k 0 ..^ N k mulGrp P var 1 R : 0 ..^ N Base E
59 58 ffnd φ k 0 ..^ N k mulGrp P var 1 R Fn 0 ..^ N
60 hashfn k 0 ..^ N k mulGrp P var 1 R Fn 0 ..^ N k 0 ..^ N k mulGrp P var 1 R = 0 ..^ N
61 59 60 syl φ k 0 ..^ N k mulGrp P var 1 R = 0 ..^ N
62 ovexd φ 0 ..^ N V
63 57 ralrimiva φ n 0 ..^ N n mulGrp P var 1 R Base E
64 drngnzr R DivRing R NzRing
65 5 64 syl φ R NzRing
66 65 ad2antrr φ n 0 ..^ N i 0 ..^ N R NzRing
67 28 adantr φ n 0 ..^ N i 0 ..^ N n 0
68 elfzonn0 i 0 ..^ N i 0
69 68 adantl φ n 0 ..^ N i 0 ..^ N i 0
70 1 29 22 66 67 69 ply1moneq φ n 0 ..^ N i 0 ..^ N n mulGrp P var 1 R = i mulGrp P var 1 R n = i
71 70 biimpd φ n 0 ..^ N i 0 ..^ N n mulGrp P var 1 R = i mulGrp P var 1 R n = i
72 71 anasss φ n 0 ..^ N i 0 ..^ N n mulGrp P var 1 R = i mulGrp P var 1 R n = i
73 72 ralrimivva φ n 0 ..^ N i 0 ..^ N n mulGrp P var 1 R = i mulGrp P var 1 R n = i
74 oveq1 n = i n mulGrp P var 1 R = i mulGrp P var 1 R
75 14 74 f1mpt k 0 ..^ N k mulGrp P var 1 R : 0 ..^ N 1-1 Base E n 0 ..^ N n mulGrp P var 1 R Base E n 0 ..^ N i 0 ..^ N n mulGrp P var 1 R = i mulGrp P var 1 R n = i
76 63 73 75 sylanbrc φ k 0 ..^ N k mulGrp P var 1 R : 0 ..^ N 1-1 Base E
77 hashf1rn 0 ..^ N V k 0 ..^ N k mulGrp P var 1 R : 0 ..^ N 1-1 Base E k 0 ..^ N k mulGrp P var 1 R = ran k 0 ..^ N k mulGrp P var 1 R
78 62 76 77 syl2anc φ k 0 ..^ N k mulGrp P var 1 R = ran k 0 ..^ N k mulGrp P var 1 R
79 hashfzo0 N 0 0 ..^ N = N
80 4 79 syl φ 0 ..^ N = N
81 61 78 80 3eqtr3d φ ran k 0 ..^ N k mulGrp P var 1 R = N
82 hashvnfin ran k 0 ..^ N k mulGrp P var 1 R LBasis E N 0 ran k 0 ..^ N k mulGrp P var 1 R = N ran k 0 ..^ N k mulGrp P var 1 R Fin
83 82 imp ran k 0 ..^ N k mulGrp P var 1 R LBasis E N 0 ran k 0 ..^ N k mulGrp P var 1 R = N ran k 0 ..^ N k mulGrp P var 1 R Fin
84 15 4 81 83 syl21anc φ ran k 0 ..^ N k mulGrp P var 1 R Fin
85 eqid LBasis E = LBasis E
86 85 dimvalfi E LVec ran k 0 ..^ N k mulGrp P var 1 R LBasis E ran k 0 ..^ N k mulGrp P var 1 R Fin dim E = ran k 0 ..^ N k mulGrp P var 1 R
87 12 15 84 86 syl3anc φ dim E = ran k 0 ..^ N k mulGrp P var 1 R
88 87 81 eqtrd φ dim E = N