Metamath Proof Explorer


Theorem ply1degltdimlem

Description: Lemma for ply1degltdim . (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses ply1degltdim.p P = Poly 1 R
ply1degltdim.d D = deg 1 R
ply1degltdim.s S = D -1 −∞ N
ply1degltdim.n φ N 0
ply1degltdim.r φ R DivRing
ply1degltdim.e E = P 𝑠 S
ply1degltdimlem.f F = n 0 ..^ N n mulGrp P var 1 R
Assertion ply1degltdimlem φ ran F LBasis E

Proof

Step Hyp Ref Expression
1 ply1degltdim.p P = Poly 1 R
2 ply1degltdim.d D = deg 1 R
3 ply1degltdim.s S = D -1 −∞ N
4 ply1degltdim.n φ N 0
5 ply1degltdim.r φ R DivRing
6 ply1degltdim.e E = P 𝑠 S
7 ply1degltdimlem.f F = n 0 ..^ N n mulGrp P var 1 R
8 eqid Base R = Base R
9 4 ad3antrrr φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E N 0
10 5 drngringd φ R Ring
11 10 ad3antrrr φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E R Ring
12 eqid 0 R = 0 R
13 eqid 0 P = 0 P
14 elmapi a Base Scalar P 0 ..^ N a : 0 ..^ N Base Scalar P
15 14 adantl φ a Base Scalar P 0 ..^ N a : 0 ..^ N Base Scalar P
16 1 ply1sca R DivRing R = Scalar P
17 5 16 syl φ R = Scalar P
18 17 fveq2d φ Base R = Base Scalar P
19 18 adantr φ a Base Scalar P 0 ..^ N Base R = Base Scalar P
20 19 feq3d φ a Base Scalar P 0 ..^ N a : 0 ..^ N Base R a : 0 ..^ N Base Scalar P
21 15 20 mpbird φ a Base Scalar P 0 ..^ N a : 0 ..^ N Base R
22 21 ad2antrr φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E a : 0 ..^ N Base R
23 simpr φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E E a P f F = 0 E
24 ovexd φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E 0 ..^ N V
25 1 5 ply1lvec φ P LVec
26 25 lveclmodd φ P LMod
27 1 2 3 4 10 ply1degltlss φ S LSubSp P
28 eqid LSubSp P = LSubSp P
29 28 lsssubg P LMod S LSubSp P S SubGrp P
30 26 27 29 syl2anc φ S SubGrp P
31 subgsubm S SubGrp P S SubMnd P
32 30 31 syl φ S SubMnd P
33 32 ad3antrrr φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E S SubMnd P
34 eqid Base P = Base P
35 2 1 34 deg1xrf D : Base P *
36 ffn D : Base P * D Fn Base P
37 35 36 mp1i φ k Base Scalar P x Base E D Fn Base P
38 eqid Scalar P = Scalar P
39 eqid P = P
40 eqid Base Scalar P = Base Scalar P
41 26 ad2antrr φ k Base Scalar P x Base E P LMod
42 simplr φ k Base Scalar P x Base E k Base Scalar P
43 34 28 lssss S LSubSp P S Base P
44 27 43 syl φ S Base P
45 6 34 ressbas2 S Base P S = Base E
46 44 45 syl φ S = Base E
47 46 44 eqsstrrd φ Base E Base P
48 47 sselda φ x Base E x Base P
49 48 adantlr φ k Base Scalar P x Base E x Base P
50 34 38 39 40 41 42 49 lmodvscld φ k Base Scalar P x Base E k P x Base P
51 mnfxr −∞ *
52 51 a1i φ k Base Scalar P x Base E −∞ *
53 4 nn0red φ N
54 53 rexrd φ N *
55 54 ad2antrr φ k Base Scalar P x Base E N *
56 35 a1i φ k Base Scalar P x Base E D : Base P *
57 56 50 ffvelcdmd φ k Base Scalar P x Base E D k P x *
58 57 mnfled φ k Base Scalar P x Base E −∞ D k P x
59 56 49 ffvelcdmd φ k Base Scalar P x Base E D x *
60 10 ad2antrr φ k Base Scalar P x Base E R Ring
61 18 ad2antrr φ k Base Scalar P x Base E Base R = Base Scalar P
62 42 61 eleqtrrd φ k Base Scalar P x Base E k Base R
63 1 2 60 34 8 39 62 49 deg1vscale φ k Base Scalar P x Base E D k P x D x
64 simpll φ k Base Scalar P x Base E φ
65 simpr φ k Base Scalar P x Base E x Base E
66 46 ad2antrr φ k Base Scalar P x Base E S = Base E
67 65 66 eleqtrrd φ k Base Scalar P x Base E x S
68 51 a1i φ x S −∞ *
69 54 adantr φ x S N *
70 35 36 mp1i φ x S D Fn Base P
71 simpr φ x S x S
72 71 3 eleqtrdi φ x S x D -1 −∞ N
73 elpreima D Fn Base P x D -1 −∞ N x Base P D x −∞ N
74 73 simplbda D Fn Base P x D -1 −∞ N D x −∞ N
75 70 72 74 syl2anc φ x S D x −∞ N
76 elico1 −∞ * N * D x −∞ N D x * −∞ D x D x < N
77 76 biimpa −∞ * N * D x −∞ N D x * −∞ D x D x < N
78 77 simp3d −∞ * N * D x −∞ N D x < N
79 68 69 75 78 syl21anc φ x S D x < N
80 64 67 79 syl2anc φ k Base Scalar P x Base E D x < N
81 57 59 55 63 80 xrlelttrd φ k Base Scalar P x Base E D k P x < N
82 52 55 57 58 81 elicod φ k Base Scalar P x Base E D k P x −∞ N
83 37 50 82 elpreimad φ k Base Scalar P x Base E k P x D -1 −∞ N
84 83 3 eleqtrrdi φ k Base Scalar P x Base E k P x S
85 84 anasss φ k Base Scalar P x Base E k P x S
86 85 ad5ant15 φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E k Base Scalar P x Base E k P x S
87 15 ad2antrr φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E a : 0 ..^ N Base Scalar P
88 35 36 mp1i φ n 0 ..^ N D Fn Base P
89 eqid mulGrp P = mulGrp P
90 89 34 mgpbas Base P = Base mulGrp P
91 eqid mulGrp P = mulGrp P
92 1 ply1ring R Ring P Ring
93 89 ringmgp P Ring mulGrp P Mnd
94 10 92 93 3syl φ mulGrp P Mnd
95 94 adantr φ n 0 ..^ N mulGrp P Mnd
96 elfzonn0 n 0 ..^ N n 0
97 96 adantl φ n 0 ..^ N n 0
98 eqid var 1 R = var 1 R
99 98 1 34 vr1cl R Ring var 1 R Base P
100 10 99 syl φ var 1 R Base P
101 100 adantr φ n 0 ..^ N var 1 R Base P
102 90 91 95 97 101 mulgnn0cld φ n 0 ..^ N n mulGrp P var 1 R Base P
103 51 a1i φ n 0 ..^ N −∞ *
104 54 adantr φ n 0 ..^ N N *
105 2 1 34 deg1xrcl n mulGrp P var 1 R Base P D n mulGrp P var 1 R *
106 102 105 syl φ n 0 ..^ N D n mulGrp P var 1 R *
107 106 mnfled φ n 0 ..^ N −∞ D n mulGrp P var 1 R
108 96 nn0red n 0 ..^ N n
109 108 rexrd n 0 ..^ N n *
110 109 adantl φ n 0 ..^ N n *
111 2 1 98 89 91 deg1pwle R Ring n 0 D n mulGrp P var 1 R n
112 10 96 111 syl2an φ n 0 ..^ N D n mulGrp P var 1 R n
113 elfzolt2 n 0 ..^ N n < N
114 113 adantl φ n 0 ..^ N n < N
115 106 110 104 112 114 xrlelttrd φ n 0 ..^ N D n mulGrp P var 1 R < N
116 103 104 106 107 115 elicod φ n 0 ..^ N D n mulGrp P var 1 R −∞ N
117 88 102 116 elpreimad φ n 0 ..^ N n mulGrp P var 1 R D -1 −∞ N
118 117 3 eleqtrrdi φ n 0 ..^ N n mulGrp P var 1 R S
119 46 adantr φ n 0 ..^ N S = Base E
120 118 119 eleqtrd φ n 0 ..^ N n mulGrp P var 1 R Base E
121 120 7 fmptd φ F : 0 ..^ N Base E
122 121 ad3antrrr φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E F : 0 ..^ N Base E
123 inidm 0 ..^ N 0 ..^ N = 0 ..^ N
124 86 87 122 24 24 123 off φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E a P f F : 0 ..^ N S
125 24 33 124 6 gsumsubm φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E P a P f F = E a P f F
126 ringmnd P Ring P Mnd
127 10 92 126 3syl φ P Mnd
128 35 36 mp1i φ D Fn Base P
129 34 13 mndidcl P Mnd 0 P Base P
130 127 129 syl φ 0 P Base P
131 51 a1i φ −∞ *
132 2 1 34 deg1xrcl 0 P Base P D 0 P *
133 130 132 syl φ D 0 P *
134 133 mnfled φ −∞ D 0 P
135 2 1 13 deg1z R Ring D 0 P = −∞
136 10 135 syl φ D 0 P = −∞
137 53 mnfltd φ −∞ < N
138 136 137 eqbrtrd φ D 0 P < N
139 131 54 133 134 138 elicod φ D 0 P −∞ N
140 128 130 139 elpreimad φ 0 P D -1 −∞ N
141 140 3 eleqtrrdi φ 0 P S
142 6 34 13 ress0g P Mnd 0 P S S Base P 0 P = 0 E
143 127 141 44 142 syl3anc φ 0 P = 0 E
144 143 ad3antrrr φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E 0 P = 0 E
145 23 125 144 3eqtr4d φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E P a P f F = 0 P
146 1 8 9 11 7 12 13 22 145 ply1gsumz φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E a = 0 ..^ N × 0 R
147 17 fveq2d φ 0 R = 0 Scalar P
148 147 sneqd φ 0 R = 0 Scalar P
149 148 xpeq2d φ 0 ..^ N × 0 R = 0 ..^ N × 0 Scalar P
150 149 ad3antrrr φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E 0 ..^ N × 0 R = 0 ..^ N × 0 Scalar P
151 146 150 eqtrd φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E a = 0 ..^ N × 0 Scalar P
152 151 expl φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E a = 0 ..^ N × 0 Scalar P
153 152 ralrimiva φ a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E a = 0 ..^ N × 0 Scalar P
154 118 7 fmptd φ F : 0 ..^ N S
155 154 frnd φ ran F S
156 eqid LSpan P = LSpan P
157 28 156 lspssp P LMod S LSubSp P ran F S LSpan P ran F S
158 26 27 155 157 syl3anc φ LSpan P ran F S
159 breq1 a = coe 1 x 0 ..^ N finSupp 0 Scalar P a finSupp 0 Scalar P coe 1 x 0 ..^ N
160 oveq1 a = coe 1 x 0 ..^ N a P f F = coe 1 x 0 ..^ N P f F
161 160 oveq2d a = coe 1 x 0 ..^ N P a P f F = P coe 1 x 0 ..^ N P f F
162 161 eqeq2d a = coe 1 x 0 ..^ N x = P a P f F x = P coe 1 x 0 ..^ N P f F
163 159 162 anbi12d a = coe 1 x 0 ..^ N finSupp 0 Scalar P a x = P a P f F finSupp 0 Scalar P coe 1 x 0 ..^ N x = P coe 1 x 0 ..^ N P f F
164 fvexd φ x S Base Scalar P V
165 ovexd φ x S 0 ..^ N V
166 44 sselda φ x S x Base P
167 eqid coe 1 x = coe 1 x
168 167 34 1 8 coe1f x Base P coe 1 x : 0 Base R
169 166 168 syl φ x S coe 1 x : 0 Base R
170 18 adantr φ x S Base R = Base Scalar P
171 170 feq3d φ x S coe 1 x : 0 Base R coe 1 x : 0 Base Scalar P
172 169 171 mpbid φ x S coe 1 x : 0 Base Scalar P
173 fzo0ssnn0 0 ..^ N 0
174 173 a1i φ x S 0 ..^ N 0
175 172 174 fssresd φ x S coe 1 x 0 ..^ N : 0 ..^ N Base Scalar P
176 164 165 175 elmapdd φ x S coe 1 x 0 ..^ N Base Scalar P 0 ..^ N
177 169 ffund φ x S Fun coe 1 x
178 fzofi 0 ..^ N Fin
179 178 a1i φ x S 0 ..^ N Fin
180 fvexd φ x S 0 Scalar P V
181 177 179 180 resfifsupp φ x S finSupp 0 Scalar P coe 1 x 0 ..^ N
182 ringcmn P Ring P CMnd
183 10 92 182 3syl φ P CMnd
184 183 adantr φ x S P CMnd
185 nn0ex 0 V
186 185 a1i φ x S 0 V
187 26 ad2antrr φ x S i 0 P LMod
188 172 ffvelcdmda φ x S i 0 coe 1 x i Base Scalar P
189 10 ad2antrr φ x S i 0 R Ring
190 189 92 93 3syl φ x S i 0 mulGrp P Mnd
191 simpr φ x S i 0 i 0
192 189 99 syl φ x S i 0 var 1 R Base P
193 90 91 190 191 192 mulgnn0cld φ x S i 0 i mulGrp P var 1 R Base P
194 34 38 39 40 187 188 193 lmodvscld φ x S i 0 coe 1 x i P i mulGrp P var 1 R Base P
195 eqid i 0 coe 1 x i P i mulGrp P var 1 R = i 0 coe 1 x i P i mulGrp P var 1 R
196 194 195 fmptd φ x S i 0 coe 1 x i P i mulGrp P var 1 R : 0 Base P
197 nfv i φ x S
198 197 194 195 fnmptd φ x S i 0 coe 1 x i P i mulGrp P var 1 R Fn 0
199 fveq2 i = j coe 1 x i = coe 1 x j
200 oveq1 i = j i mulGrp P var 1 R = j mulGrp P var 1 R
201 199 200 oveq12d i = j coe 1 x i P i mulGrp P var 1 R = coe 1 x j P j mulGrp P var 1 R
202 simplr φ x S j 0 N j j 0
203 ovexd φ x S j 0 N j coe 1 x j P j mulGrp P var 1 R V
204 195 201 202 203 fvmptd3 φ x S j 0 N j i 0 coe 1 x i P i mulGrp P var 1 R j = coe 1 x j P j mulGrp P var 1 R
205 166 ad2antrr φ x S j 0 N j x Base P
206 icossxr −∞ N *
207 206 75 sselid φ x S D x *
208 207 ad2antrr φ x S j 0 N j D x *
209 54 ad3antrrr φ x S j 0 N j N *
210 202 nn0red φ x S j 0 N j j
211 210 rexrd φ x S j 0 N j j *
212 79 ad2antrr φ x S j 0 N j D x < N
213 simpr φ x S j 0 N j N j
214 208 209 211 212 213 xrltletrd φ x S j 0 N j D x < j
215 2 1 34 12 167 deg1lt x Base P j 0 D x < j coe 1 x j = 0 R
216 205 202 214 215 syl3anc φ x S j 0 N j coe 1 x j = 0 R
217 216 oveq1d φ x S j 0 N j coe 1 x j P j mulGrp P var 1 R = 0 R P j mulGrp P var 1 R
218 147 ad3antrrr φ x S j 0 N j 0 R = 0 Scalar P
219 218 oveq1d φ x S j 0 N j 0 R P j mulGrp P var 1 R = 0 Scalar P P j mulGrp P var 1 R
220 26 ad3antrrr φ x S j 0 N j P LMod
221 94 ad3antrrr φ x S j 0 N j mulGrp P Mnd
222 100 ad3antrrr φ x S j 0 N j var 1 R Base P
223 90 91 221 202 222 mulgnn0cld φ x S j 0 N j j mulGrp P var 1 R Base P
224 eqid 0 Scalar P = 0 Scalar P
225 34 38 39 224 13 lmod0vs P LMod j mulGrp P var 1 R Base P 0 Scalar P P j mulGrp P var 1 R = 0 P
226 220 223 225 syl2anc φ x S j 0 N j 0 Scalar P P j mulGrp P var 1 R = 0 P
227 219 226 eqtrd φ x S j 0 N j 0 R P j mulGrp P var 1 R = 0 P
228 204 217 227 3eqtrd φ x S j 0 N j i 0 coe 1 x i P i mulGrp P var 1 R j = 0 P
229 4 nn0zd φ N
230 229 adantr φ x S N
231 198 228 230 suppssnn0 φ x S i 0 coe 1 x i P i mulGrp P var 1 R supp 0 P 0 ..^ N
232 186 mptexd φ x S i 0 coe 1 x i P i mulGrp P var 1 R V
233 198 fnfund φ x S Fun i 0 coe 1 x i P i mulGrp P var 1 R
234 fvexd φ x S 0 P V
235 suppssfifsupp i 0 coe 1 x i P i mulGrp P var 1 R V Fun i 0 coe 1 x i P i mulGrp P var 1 R 0 P V 0 ..^ N Fin i 0 coe 1 x i P i mulGrp P var 1 R supp 0 P 0 ..^ N finSupp 0 P i 0 coe 1 x i P i mulGrp P var 1 R
236 232 233 234 179 231 235 syl32anc φ x S finSupp 0 P i 0 coe 1 x i P i mulGrp P var 1 R
237 34 13 184 186 196 231 236 gsumres φ x S P i 0 coe 1 x i P i mulGrp P var 1 R 0 ..^ N = P i 0 coe 1 x i P i mulGrp P var 1 R
238 fvexd φ x S coe 1 x V
239 ovexd φ 0 ..^ N V
240 154 239 fexd φ F V
241 240 adantr φ x S F V
242 offres coe 1 x V F V coe 1 x P f F 0 ..^ N = coe 1 x 0 ..^ N P f F 0 ..^ N
243 238 241 242 syl2anc φ x S coe 1 x P f F 0 ..^ N = coe 1 x 0 ..^ N P f F 0 ..^ N
244 169 ffnd φ x S coe 1 x Fn 0
245 154 ffnd φ F Fn 0 ..^ N
246 245 adantr φ x S F Fn 0 ..^ N
247 sseqin2 0 ..^ N 0 0 0 ..^ N = 0 ..^ N
248 173 247 mpbi 0 0 ..^ N = 0 ..^ N
249 eqidd φ x S j 0 coe 1 x j = coe 1 x j
250 oveq1 n = j n mulGrp P var 1 R = j mulGrp P var 1 R
251 simpr φ x S j 0 ..^ N j 0 ..^ N
252 ovexd φ x S j 0 ..^ N j mulGrp P var 1 R V
253 7 250 251 252 fvmptd3 φ x S j 0 ..^ N F j = j mulGrp P var 1 R
254 244 246 186 165 248 249 253 ofval φ x S j 0 ..^ N coe 1 x P f F j = coe 1 x j P j mulGrp P var 1 R
255 173 251 sselid φ x S j 0 ..^ N j 0
256 ovexd φ x S j 0 ..^ N coe 1 x j P j mulGrp P var 1 R V
257 195 201 255 256 fvmptd3 φ x S j 0 ..^ N i 0 coe 1 x i P i mulGrp P var 1 R j = coe 1 x j P j mulGrp P var 1 R
258 254 257 eqtr4d φ x S j 0 ..^ N coe 1 x P f F j = i 0 coe 1 x i P i mulGrp P var 1 R j
259 258 ralrimiva φ x S j 0 ..^ N coe 1 x P f F j = i 0 coe 1 x i P i mulGrp P var 1 R j
260 244 246 186 165 248 offn φ x S coe 1 x P f F Fn 0 ..^ N
261 ssidd φ x S 0 ..^ N 0 ..^ N
262 fvreseq0 coe 1 x P f F Fn 0 ..^ N i 0 coe 1 x i P i mulGrp P var 1 R Fn 0 0 ..^ N 0 ..^ N 0 ..^ N 0 coe 1 x P f F 0 ..^ N = i 0 coe 1 x i P i mulGrp P var 1 R 0 ..^ N j 0 ..^ N coe 1 x P f F j = i 0 coe 1 x i P i mulGrp P var 1 R j
263 260 198 261 174 262 syl22anc φ x S coe 1 x P f F 0 ..^ N = i 0 coe 1 x i P i mulGrp P var 1 R 0 ..^ N j 0 ..^ N coe 1 x P f F j = i 0 coe 1 x i P i mulGrp P var 1 R j
264 259 263 mpbird φ x S coe 1 x P f F 0 ..^ N = i 0 coe 1 x i P i mulGrp P var 1 R 0 ..^ N
265 fnresdm F Fn 0 ..^ N F 0 ..^ N = F
266 245 265 syl φ F 0 ..^ N = F
267 266 adantr φ x S F 0 ..^ N = F
268 267 oveq2d φ x S coe 1 x 0 ..^ N P f F 0 ..^ N = coe 1 x 0 ..^ N P f F
269 243 264 268 3eqtr3rd φ x S coe 1 x 0 ..^ N P f F = i 0 coe 1 x i P i mulGrp P var 1 R 0 ..^ N
270 269 oveq2d φ x S P coe 1 x 0 ..^ N P f F = P i 0 coe 1 x i P i mulGrp P var 1 R 0 ..^ N
271 10 adantr φ x S R Ring
272 1 98 34 39 89 91 167 ply1coe R Ring x Base P x = P i 0 coe 1 x i P i mulGrp P var 1 R
273 271 166 272 syl2anc φ x S x = P i 0 coe 1 x i P i mulGrp P var 1 R
274 237 270 273 3eqtr4rd φ x S x = P coe 1 x 0 ..^ N P f F
275 181 274 jca φ x S finSupp 0 Scalar P coe 1 x 0 ..^ N x = P coe 1 x 0 ..^ N P f F
276 163 176 275 rspcedvdw φ x S a Base Scalar P 0 ..^ N finSupp 0 Scalar P a x = P a P f F
277 102 7 fmptd φ F : 0 ..^ N Base P
278 156 34 40 38 224 39 277 26 239 ellspd φ x LSpan P F 0 ..^ N a Base Scalar P 0 ..^ N finSupp 0 Scalar P a x = P a P f F
279 278 adantr φ x S x LSpan P F 0 ..^ N a Base Scalar P 0 ..^ N finSupp 0 Scalar P a x = P a P f F
280 276 279 mpbird φ x S x LSpan P F 0 ..^ N
281 imadmrn F dom F = ran F
282 154 fdmd φ dom F = 0 ..^ N
283 282 imaeq2d φ F dom F = F 0 ..^ N
284 281 283 eqtr3id φ ran F = F 0 ..^ N
285 284 fveq2d φ LSpan P ran F = LSpan P F 0 ..^ N
286 285 adantr φ x S LSpan P ran F = LSpan P F 0 ..^ N
287 280 286 eleqtrrd φ x S x LSpan P ran F
288 158 287 eqelssd φ LSpan P ran F = S
289 eqid LSpan E = LSpan E
290 6 156 289 28 lsslsp P LMod S LSubSp P ran F S LSpan E ran F = LSpan P ran F
291 290 eqcomd P LMod S LSubSp P ran F S LSpan P ran F = LSpan E ran F
292 26 27 155 291 syl3anc φ LSpan P ran F = LSpan E ran F
293 288 292 46 3eqtr3d φ LSpan E ran F = Base E
294 eqid Base E = Base E
295 2 fvexi D V
296 cnvexg D V D -1 V
297 imaexg D -1 V D -1 −∞ N V
298 295 296 297 mp2b D -1 −∞ N V
299 3 298 eqeltri S V
300 6 38 resssca S V Scalar P = Scalar E
301 299 300 ax-mp Scalar P = Scalar E
302 301 fveq2i Base Scalar P = Base Scalar E
303 eqid Scalar E = Scalar E
304 6 39 ressvsca S V P = E
305 299 304 ax-mp P = E
306 eqid 0 E = 0 E
307 301 fveq2i 0 Scalar P = 0 Scalar E
308 eqid LBasis E = LBasis E
309 6 28 lsslvec P LVec S LSubSp P E LVec
310 25 27 309 syl2anc φ E LVec
311 310 lveclmodd φ E LMod
312 17 5 eqeltrrd φ Scalar P DivRing
313 drngnzr Scalar P DivRing Scalar P NzRing
314 312 313 syl φ Scalar P NzRing
315 301 314 eqeltrrid φ Scalar E NzRing
316 120 ralrimiva φ n 0 ..^ N n mulGrp P var 1 R Base E
317 drngnzr R DivRing R NzRing
318 5 317 syl φ R NzRing
319 318 ad2antrr φ n 0 ..^ N i 0 ..^ N R NzRing
320 97 adantr φ n 0 ..^ N i 0 ..^ N n 0
321 elfzonn0 i 0 ..^ N i 0
322 321 adantl φ n 0 ..^ N i 0 ..^ N i 0
323 1 98 91 319 320 322 ply1moneq φ n 0 ..^ N i 0 ..^ N n mulGrp P var 1 R = i mulGrp P var 1 R n = i
324 323 biimpd φ n 0 ..^ N i 0 ..^ N n mulGrp P var 1 R = i mulGrp P var 1 R n = i
325 324 anasss φ n 0 ..^ N i 0 ..^ N n mulGrp P var 1 R = i mulGrp P var 1 R n = i
326 325 ralrimivva φ n 0 ..^ N i 0 ..^ N n mulGrp P var 1 R = i mulGrp P var 1 R n = i
327 oveq1 n = i n mulGrp P var 1 R = i mulGrp P var 1 R
328 7 327 f1mpt F : 0 ..^ N 1-1 Base E n 0 ..^ N n mulGrp P var 1 R Base E n 0 ..^ N i 0 ..^ N n mulGrp P var 1 R = i mulGrp P var 1 R n = i
329 316 326 328 sylanbrc φ F : 0 ..^ N 1-1 Base E
330 294 302 303 305 306 307 308 289 311 315 239 329 islbs5 φ ran F LBasis E a Base Scalar P 0 ..^ N finSupp 0 Scalar P a E a P f F = 0 E a = 0 ..^ N × 0 Scalar P LSpan E ran F = Base E
331 153 293 330 mpbir2and φ ran F LBasis E