Metamath Proof Explorer


Theorem ply1degltel

Description: Characterize elementhood in the set S of polynomials of degree less than N . (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses ply1degltlss.p P = Poly 1 R
ply1degltlss.d D = deg 1 R
ply1degltlss.1 S = D -1 −∞ N
ply1degltlss.3 φ N 0
ply1degltlss.2 φ R Ring
ply1degltel.1 B = Base P
Assertion ply1degltel φ F S F B D F N 1

Proof

Step Hyp Ref Expression
1 ply1degltlss.p P = Poly 1 R
2 ply1degltlss.d D = deg 1 R
3 ply1degltlss.1 S = D -1 −∞ N
4 ply1degltlss.3 φ N 0
5 ply1degltlss.2 φ R Ring
6 ply1degltel.1 B = Base P
7 simpr φ F = 0 P F = 0 P
8 2 1 6 deg1xrf D : B *
9 8 a1i φ D : B *
10 9 ffnd φ D Fn B
11 1 ply1ring R Ring P Ring
12 eqid 0 P = 0 P
13 6 12 ring0cl P Ring 0 P B
14 5 11 13 3syl φ 0 P B
15 2 1 12 deg1z R Ring D 0 P = −∞
16 5 15 syl φ D 0 P = −∞
17 mnfxr −∞ *
18 17 a1i φ −∞ *
19 4 nn0red φ N
20 19 rexrd φ N *
21 18 xrleidd φ −∞ −∞
22 19 mnfltd φ −∞ < N
23 18 20 18 21 22 elicod φ −∞ −∞ N
24 16 23 eqeltrd φ D 0 P −∞ N
25 10 14 24 elpreimad φ 0 P D -1 −∞ N
26 25 3 eleqtrrdi φ 0 P S
27 26 adantr φ F = 0 P 0 P S
28 7 27 eqeltrd φ F = 0 P F S
29 cnvimass D -1 −∞ N dom D
30 3 29 eqsstri S dom D
31 8 fdmi dom D = B
32 30 31 sseqtri S B
33 32 28 sselid φ F = 0 P F B
34 7 fveq2d φ F = 0 P D F = D 0 P
35 16 adantr φ F = 0 P D 0 P = −∞
36 34 35 eqtrd φ F = 0 P D F = −∞
37 1red φ 1
38 19 37 resubcld φ N 1
39 38 rexrd φ N 1 *
40 39 adantr φ F = 0 P N 1 *
41 40 mnfled φ F = 0 P −∞ N 1
42 36 41 eqbrtrd φ F = 0 P D F N 1
43 pm5.1 F S F B D F N 1 F S F B D F N 1
44 28 33 42 43 syl12anc φ F = 0 P F S F B D F N 1
45 3 eleq2i F S F D -1 −∞ N
46 10 adantr φ F 0 P D Fn B
47 elpreima D Fn B F D -1 −∞ N F B D F −∞ N
48 46 47 syl φ F 0 P F D -1 −∞ N F B D F −∞ N
49 45 48 bitrid φ F 0 P F S F B D F −∞ N
50 17 a1i φ F 0 P F B −∞ *
51 20 ad2antrr φ F 0 P F B N *
52 elico1 −∞ * N * D F −∞ N D F * −∞ D F D F < N
53 50 51 52 syl2anc φ F 0 P F B D F −∞ N D F * −∞ D F D F < N
54 df-3an D F * −∞ D F D F < N D F * −∞ D F D F < N
55 53 54 bitrdi φ F 0 P F B D F −∞ N D F * −∞ D F D F < N
56 5 ad2antrr φ F 0 P F B R Ring
57 simpr φ F 0 P F B F B
58 simplr φ F 0 P F B F 0 P
59 2 1 12 6 deg1nn0cl R Ring F B F 0 P D F 0
60 56 57 58 59 syl3anc φ F 0 P F B D F 0
61 60 nn0red φ F 0 P F B D F
62 61 rexrd φ F 0 P F B D F *
63 62 mnfled φ F 0 P F B −∞ D F
64 62 63 jca φ F 0 P F B D F * −∞ D F
65 64 biantrurd φ F 0 P F B D F < N D F * −∞ D F D F < N
66 60 nn0zd φ F 0 P F B D F
67 4 nn0zd φ N
68 67 ad2antrr φ F 0 P F B N
69 zltlem1 D F N D F < N D F N 1
70 66 68 69 syl2anc φ F 0 P F B D F < N D F N 1
71 55 65 70 3bitr2d φ F 0 P F B D F −∞ N D F N 1
72 71 pm5.32da φ F 0 P F B D F −∞ N F B D F N 1
73 49 72 bitrd φ F 0 P F S F B D F N 1
74 44 73 pm2.61dane φ F S F B D F N 1