Step |
Hyp |
Ref |
Expression |
1 |
|
ply1degltlss.p |
|
2 |
|
ply1degltlss.d |
|
3 |
|
ply1degltlss.1 |
|
4 |
|
ply1degltlss.3 |
|
5 |
|
ply1degltlss.2 |
|
6 |
|
ply1degltel.1 |
|
7 |
|
simpr |
|
8 |
2 1 6
|
deg1xrf |
|
9 |
8
|
a1i |
|
10 |
9
|
ffnd |
|
11 |
1
|
ply1ring |
|
12 |
|
eqid |
|
13 |
6 12
|
ring0cl |
|
14 |
5 11 13
|
3syl |
|
15 |
2 1 12
|
deg1z |
|
16 |
5 15
|
syl |
|
17 |
|
mnfxr |
|
18 |
17
|
a1i |
|
19 |
4
|
nn0red |
|
20 |
19
|
rexrd |
|
21 |
18
|
xrleidd |
|
22 |
19
|
mnfltd |
|
23 |
18 20 18 21 22
|
elicod |
|
24 |
16 23
|
eqeltrd |
|
25 |
10 14 24
|
elpreimad |
|
26 |
25 3
|
eleqtrrdi |
|
27 |
26
|
adantr |
|
28 |
7 27
|
eqeltrd |
|
29 |
|
cnvimass |
|
30 |
3 29
|
eqsstri |
|
31 |
8
|
fdmi |
|
32 |
30 31
|
sseqtri |
|
33 |
32 28
|
sselid |
|
34 |
7
|
fveq2d |
|
35 |
16
|
adantr |
|
36 |
34 35
|
eqtrd |
|
37 |
|
1red |
|
38 |
19 37
|
resubcld |
|
39 |
38
|
rexrd |
|
40 |
39
|
adantr |
|
41 |
40
|
mnfled |
|
42 |
36 41
|
eqbrtrd |
|
43 |
|
pm5.1 |
|
44 |
28 33 42 43
|
syl12anc |
|
45 |
3
|
eleq2i |
|
46 |
10
|
adantr |
|
47 |
|
elpreima |
|
48 |
46 47
|
syl |
|
49 |
45 48
|
bitrid |
|
50 |
17
|
a1i |
|
51 |
20
|
ad2antrr |
|
52 |
|
elico1 |
|
53 |
50 51 52
|
syl2anc |
|
54 |
|
df-3an |
|
55 |
53 54
|
bitrdi |
|
56 |
5
|
ad2antrr |
|
57 |
|
simpr |
|
58 |
|
simplr |
|
59 |
2 1 12 6
|
deg1nn0cl |
|
60 |
56 57 58 59
|
syl3anc |
|
61 |
60
|
nn0red |
|
62 |
61
|
rexrd |
|
63 |
62
|
mnfled |
|
64 |
62 63
|
jca |
|
65 |
64
|
biantrurd |
|
66 |
60
|
nn0zd |
|
67 |
4
|
nn0zd |
|
68 |
67
|
ad2antrr |
|
69 |
|
zltlem1 |
|
70 |
66 68 69
|
syl2anc |
|
71 |
55 65 70
|
3bitr2d |
|
72 |
71
|
pm5.32da |
|
73 |
49 72
|
bitrd |
|
74 |
44 73
|
pm2.61dane |
|