Step |
Hyp |
Ref |
Expression |
1 |
|
ply1degltlss.p |
|
2 |
|
ply1degltlss.d |
|
3 |
|
ply1degltlss.1 |
|
4 |
|
ply1degltlss.3 |
|
5 |
|
ply1degltlss.2 |
|
6 |
1
|
ply1sca |
|
7 |
5 6
|
syl |
|
8 |
|
eqidd |
|
9 |
|
eqidd |
|
10 |
|
eqidd |
|
11 |
|
eqidd |
|
12 |
|
eqidd |
|
13 |
|
cnvimass |
|
14 |
3 13
|
eqsstri |
|
15 |
|
eqid |
|
16 |
2 1 15
|
deg1xrf |
|
17 |
16
|
fdmi |
|
18 |
14 17
|
sseqtri |
|
19 |
18
|
a1i |
|
20 |
16
|
a1i |
|
21 |
20
|
ffnd |
|
22 |
1
|
ply1ring |
|
23 |
|
eqid |
|
24 |
15 23
|
ring0cl |
|
25 |
5 22 24
|
3syl |
|
26 |
2 1 23
|
deg1z |
|
27 |
5 26
|
syl |
|
28 |
|
mnfxr |
|
29 |
28
|
a1i |
|
30 |
4
|
nn0red |
|
31 |
30
|
rexrd |
|
32 |
29
|
xrleidd |
|
33 |
30
|
mnfltd |
|
34 |
29 31 29 32 33
|
elicod |
|
35 |
27 34
|
eqeltrd |
|
36 |
21 25 35
|
elpreimad |
|
37 |
36 3
|
eleqtrrdi |
|
38 |
37
|
ne0d |
|
39 |
|
simpl |
|
40 |
|
eqid |
|
41 |
1
|
ply1lmod |
|
42 |
5 41
|
syl |
|
43 |
42
|
adantr |
|
44 |
43
|
lmodgrpd |
|
45 |
|
simpr1 |
|
46 |
7
|
fveq2d |
|
47 |
46
|
adantr |
|
48 |
45 47
|
eleqtrd |
|
49 |
|
simpr2 |
|
50 |
18 49
|
sselid |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
15 51 52 53
|
lmodvscl |
|
55 |
43 48 50 54
|
syl3anc |
|
56 |
|
simpr3 |
|
57 |
18 56
|
sselid |
|
58 |
15 40 44 55 57
|
grpcld |
|
59 |
5
|
adantr |
|
60 |
|
1red |
|
61 |
30 60
|
resubcld |
|
62 |
61
|
rexrd |
|
63 |
62
|
adantr |
|
64 |
16
|
a1i |
|
65 |
64 55
|
ffvelcdmd |
|
66 |
64 50
|
ffvelcdmd |
|
67 |
|
eqid |
|
68 |
1 2 59 15 67 52 45 50
|
deg1vscale |
|
69 |
1 2 3 4 5 15
|
ply1degltel |
|
70 |
69
|
simplbda |
|
71 |
49 70
|
syldan |
|
72 |
65 66 63 68 71
|
xrletrd |
|
73 |
1 2 3 4 5 15
|
ply1degltel |
|
74 |
73
|
simplbda |
|
75 |
56 74
|
syldan |
|
76 |
1 2 59 15 40 55 57 63 72 75
|
deg1addle2 |
|
77 |
1 2 3 4 5 15
|
ply1degltel |
|
78 |
77
|
biimpar |
|
79 |
39 58 76 78
|
syl12anc |
|
80 |
7 8 9 10 11 12 19 38 79
|
islssd |
|