Metamath Proof Explorer


Theorem ply1degltlss

Description: The space S of the univariate polynomials of degree less than N forms a vector subspace. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses ply1degltlss.p P = Poly 1 R
ply1degltlss.d D = deg 1 R
ply1degltlss.1 S = D -1 −∞ N
ply1degltlss.3 φ N 0
ply1degltlss.2 φ R Ring
Assertion ply1degltlss φ S LSubSp P

Proof

Step Hyp Ref Expression
1 ply1degltlss.p P = Poly 1 R
2 ply1degltlss.d D = deg 1 R
3 ply1degltlss.1 S = D -1 −∞ N
4 ply1degltlss.3 φ N 0
5 ply1degltlss.2 φ R Ring
6 1 ply1sca R Ring R = Scalar P
7 5 6 syl φ R = Scalar P
8 eqidd φ Base R = Base R
9 eqidd φ Base P = Base P
10 eqidd φ + P = + P
11 eqidd φ P = P
12 eqidd φ LSubSp P = LSubSp P
13 cnvimass D -1 −∞ N dom D
14 3 13 eqsstri S dom D
15 eqid Base P = Base P
16 2 1 15 deg1xrf D : Base P *
17 16 fdmi dom D = Base P
18 14 17 sseqtri S Base P
19 18 a1i φ S Base P
20 16 a1i φ D : Base P *
21 20 ffnd φ D Fn Base P
22 1 ply1ring R Ring P Ring
23 eqid 0 P = 0 P
24 15 23 ring0cl P Ring 0 P Base P
25 5 22 24 3syl φ 0 P Base P
26 2 1 23 deg1z R Ring D 0 P = −∞
27 5 26 syl φ D 0 P = −∞
28 mnfxr −∞ *
29 28 a1i φ −∞ *
30 4 nn0red φ N
31 30 rexrd φ N *
32 29 xrleidd φ −∞ −∞
33 30 mnfltd φ −∞ < N
34 29 31 29 32 33 elicod φ −∞ −∞ N
35 27 34 eqeltrd φ D 0 P −∞ N
36 21 25 35 elpreimad φ 0 P D -1 −∞ N
37 36 3 eleqtrrdi φ 0 P S
38 37 ne0d φ S
39 simpl φ x Base R a S b S φ
40 eqid + P = + P
41 1 ply1lmod R Ring P LMod
42 5 41 syl φ P LMod
43 42 adantr φ x Base R a S b S P LMod
44 43 lmodgrpd φ x Base R a S b S P Grp
45 simpr1 φ x Base R a S b S x Base R
46 7 fveq2d φ Base R = Base Scalar P
47 46 adantr φ x Base R a S b S Base R = Base Scalar P
48 45 47 eleqtrd φ x Base R a S b S x Base Scalar P
49 simpr2 φ x Base R a S b S a S
50 18 49 sselid φ x Base R a S b S a Base P
51 eqid Scalar P = Scalar P
52 eqid P = P
53 eqid Base Scalar P = Base Scalar P
54 15 51 52 53 lmodvscl P LMod x Base Scalar P a Base P x P a Base P
55 43 48 50 54 syl3anc φ x Base R a S b S x P a Base P
56 simpr3 φ x Base R a S b S b S
57 18 56 sselid φ x Base R a S b S b Base P
58 15 40 44 55 57 grpcld φ x Base R a S b S x P a + P b Base P
59 5 adantr φ x Base R a S b S R Ring
60 1red φ 1
61 30 60 resubcld φ N 1
62 61 rexrd φ N 1 *
63 62 adantr φ x Base R a S b S N 1 *
64 16 a1i φ x Base R a S b S D : Base P *
65 64 55 ffvelcdmd φ x Base R a S b S D x P a *
66 64 50 ffvelcdmd φ x Base R a S b S D a *
67 eqid Base R = Base R
68 1 2 59 15 67 52 45 50 deg1vscale φ x Base R a S b S D x P a D a
69 1 2 3 4 5 15 ply1degltel φ a S a Base P D a N 1
70 69 simplbda φ a S D a N 1
71 49 70 syldan φ x Base R a S b S D a N 1
72 65 66 63 68 71 xrletrd φ x Base R a S b S D x P a N 1
73 1 2 3 4 5 15 ply1degltel φ b S b Base P D b N 1
74 73 simplbda φ b S D b N 1
75 56 74 syldan φ x Base R a S b S D b N 1
76 1 2 59 15 40 55 57 63 72 75 deg1addle2 φ x Base R a S b S D x P a + P b N 1
77 1 2 3 4 5 15 ply1degltel φ x P a + P b S x P a + P b Base P D x P a + P b N 1
78 77 biimpar φ x P a + P b Base P D x P a + P b N 1 x P a + P b S
79 39 58 76 78 syl12anc φ x Base R a S b S x P a + P b S
80 7 8 9 10 11 12 19 38 79 islssd φ S LSubSp P