Metamath Proof Explorer


Theorem ply1divalg

Description: The division algorithm for univariate polynomials over a ring. For polynomials F , G such that G =/= 0 and the leading coefficient of G is a unit, there are unique polynomials q and r = F - ( G x. q ) such that the degree of r is less than the degree of G . (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses ply1divalg.p P = Poly 1 R
ply1divalg.d D = deg 1 R
ply1divalg.b B = Base P
ply1divalg.m - ˙ = - P
ply1divalg.z 0 ˙ = 0 P
ply1divalg.t ˙ = P
ply1divalg.r1 φ R Ring
ply1divalg.f φ F B
ply1divalg.g1 φ G B
ply1divalg.g2 φ G 0 ˙
ply1divalg.g3 φ coe 1 G D G U
ply1divalg.u U = Unit R
Assertion ply1divalg φ ∃! q B D F - ˙ G ˙ q < D G

Proof

Step Hyp Ref Expression
1 ply1divalg.p P = Poly 1 R
2 ply1divalg.d D = deg 1 R
3 ply1divalg.b B = Base P
4 ply1divalg.m - ˙ = - P
5 ply1divalg.z 0 ˙ = 0 P
6 ply1divalg.t ˙ = P
7 ply1divalg.r1 φ R Ring
8 ply1divalg.f φ F B
9 ply1divalg.g1 φ G B
10 ply1divalg.g2 φ G 0 ˙
11 ply1divalg.g3 φ coe 1 G D G U
12 ply1divalg.u U = Unit R
13 eqid 1 R = 1 R
14 eqid Base R = Base R
15 eqid R = R
16 eqid inv r R = inv r R
17 12 16 14 ringinvcl R Ring coe 1 G D G U inv r R coe 1 G D G Base R
18 7 11 17 syl2anc φ inv r R coe 1 G D G Base R
19 12 16 15 13 unitrinv R Ring coe 1 G D G U coe 1 G D G R inv r R coe 1 G D G = 1 R
20 7 11 19 syl2anc φ coe 1 G D G R inv r R coe 1 G D G = 1 R
21 1 2 3 4 5 6 7 8 9 10 13 14 15 18 20 ply1divex φ q B D F - ˙ G ˙ q < D G
22 eqid RLReg R = RLReg R
23 22 12 unitrrg R Ring U RLReg R
24 7 23 syl φ U RLReg R
25 24 11 sseldd φ coe 1 G D G RLReg R
26 1 2 3 4 5 6 7 8 9 10 25 22 ply1divmo φ * q B D F - ˙ G ˙ q < D G
27 reu5 ∃! q B D F - ˙ G ˙ q < D G q B D F - ˙ G ˙ q < D G * q B D F - ˙ G ˙ q < D G
28 21 26 27 sylanbrc φ ∃! q B D F - ˙ G ˙ q < D G