Step |
Hyp |
Ref |
Expression |
1 |
|
ply1divalg.p |
|
2 |
|
ply1divalg.d |
|
3 |
|
ply1divalg.b |
|
4 |
|
ply1divalg.m |
|
5 |
|
ply1divalg.z |
|
6 |
|
ply1divalg.t |
|
7 |
|
ply1divalg.r1 |
|
8 |
|
ply1divalg.f |
|
9 |
|
ply1divalg.g1 |
|
10 |
|
ply1divalg.g2 |
|
11 |
|
ply1divalg.g3 |
|
12 |
|
ply1divalg.u |
|
13 |
|
eqid |
|
14 |
|
eqidd |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
15 16
|
opprbas |
|
18 |
17
|
a1i |
|
19 |
|
eqid |
|
20 |
15 19
|
oppradd |
|
21 |
20
|
oveqi |
|
22 |
21
|
a1i |
|
23 |
14 18 22
|
deg1propd |
|
24 |
23
|
mptru |
|
25 |
2 24
|
eqtri |
|
26 |
1
|
fveq2i |
|
27 |
14 18 22
|
ply1baspropd |
|
28 |
27
|
mptru |
|
29 |
26 28
|
eqtri |
|
30 |
3 29
|
eqtri |
|
31 |
29
|
a1i |
|
32 |
1
|
fveq2i |
|
33 |
14 18 22
|
ply1plusgpropd |
|
34 |
33
|
mptru |
|
35 |
32 34
|
eqtri |
|
36 |
35
|
a1i |
|
37 |
31 36
|
grpsubpropd |
|
38 |
37
|
mptru |
|
39 |
4 38
|
eqtri |
|
40 |
3
|
a1i |
|
41 |
30
|
a1i |
|
42 |
35
|
oveqi |
|
43 |
42
|
a1i |
|
44 |
40 41 43
|
grpidpropd |
|
45 |
44
|
mptru |
|
46 |
5 45
|
eqtri |
|
47 |
|
eqid |
|
48 |
15
|
opprring |
|
49 |
7 48
|
syl |
|
50 |
12 15
|
opprunit |
|
51 |
13 25 30 39 46 47 49 8 9 10 11 50
|
ply1divalg |
|
52 |
7
|
adantr |
|
53 |
9
|
adantr |
|
54 |
|
simpr |
|
55 |
1 15 13 6 47 3
|
ply1opprmul |
|
56 |
52 53 54 55
|
syl3anc |
|
57 |
56
|
eqcomd |
|
58 |
57
|
oveq2d |
|
59 |
58
|
fveq2d |
|
60 |
59
|
breq1d |
|
61 |
60
|
reubidva |
|
62 |
51 61
|
mpbird |
|