Metamath Proof Explorer


Theorem ply1divalg2

Description: Reverse the order of multiplication in ply1divalg via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses ply1divalg.p P = Poly 1 R
ply1divalg.d D = deg 1 R
ply1divalg.b B = Base P
ply1divalg.m - ˙ = - P
ply1divalg.z 0 ˙ = 0 P
ply1divalg.t ˙ = P
ply1divalg.r1 φ R Ring
ply1divalg.f φ F B
ply1divalg.g1 φ G B
ply1divalg.g2 φ G 0 ˙
ply1divalg.g3 φ coe 1 G D G U
ply1divalg.u U = Unit R
Assertion ply1divalg2 φ ∃! q B D F - ˙ q ˙ G < D G

Proof

Step Hyp Ref Expression
1 ply1divalg.p P = Poly 1 R
2 ply1divalg.d D = deg 1 R
3 ply1divalg.b B = Base P
4 ply1divalg.m - ˙ = - P
5 ply1divalg.z 0 ˙ = 0 P
6 ply1divalg.t ˙ = P
7 ply1divalg.r1 φ R Ring
8 ply1divalg.f φ F B
9 ply1divalg.g1 φ G B
10 ply1divalg.g2 φ G 0 ˙
11 ply1divalg.g3 φ coe 1 G D G U
12 ply1divalg.u U = Unit R
13 eqid Poly 1 opp r R = Poly 1 opp r R
14 eqidd Base R = Base R
15 eqid opp r R = opp r R
16 eqid Base R = Base R
17 15 16 opprbas Base R = Base opp r R
18 17 a1i Base R = Base opp r R
19 eqid + R = + R
20 15 19 oppradd + R = + opp r R
21 20 oveqi q + R r = q + opp r R r
22 21 a1i q Base R r Base R q + R r = q + opp r R r
23 14 18 22 deg1propd deg 1 R = deg 1 opp r R
24 23 mptru deg 1 R = deg 1 opp r R
25 2 24 eqtri D = deg 1 opp r R
26 1 fveq2i Base P = Base Poly 1 R
27 14 18 22 ply1baspropd Base Poly 1 R = Base Poly 1 opp r R
28 27 mptru Base Poly 1 R = Base Poly 1 opp r R
29 26 28 eqtri Base P = Base Poly 1 opp r R
30 3 29 eqtri B = Base Poly 1 opp r R
31 29 a1i Base P = Base Poly 1 opp r R
32 1 fveq2i + P = + Poly 1 R
33 14 18 22 ply1plusgpropd + Poly 1 R = + Poly 1 opp r R
34 33 mptru + Poly 1 R = + Poly 1 opp r R
35 32 34 eqtri + P = + Poly 1 opp r R
36 35 a1i + P = + Poly 1 opp r R
37 31 36 grpsubpropd - P = - Poly 1 opp r R
38 37 mptru - P = - Poly 1 opp r R
39 4 38 eqtri - ˙ = - Poly 1 opp r R
40 3 a1i B = Base P
41 30 a1i B = Base Poly 1 opp r R
42 35 oveqi q + P r = q + Poly 1 opp r R r
43 42 a1i q B r B q + P r = q + Poly 1 opp r R r
44 40 41 43 grpidpropd 0 P = 0 Poly 1 opp r R
45 44 mptru 0 P = 0 Poly 1 opp r R
46 5 45 eqtri 0 ˙ = 0 Poly 1 opp r R
47 eqid Poly 1 opp r R = Poly 1 opp r R
48 15 opprring R Ring opp r R Ring
49 7 48 syl φ opp r R Ring
50 12 15 opprunit U = Unit opp r R
51 13 25 30 39 46 47 49 8 9 10 11 50 ply1divalg φ ∃! q B D F - ˙ G Poly 1 opp r R q < D G
52 7 adantr φ q B R Ring
53 9 adantr φ q B G B
54 simpr φ q B q B
55 1 15 13 6 47 3 ply1opprmul R Ring G B q B G Poly 1 opp r R q = q ˙ G
56 52 53 54 55 syl3anc φ q B G Poly 1 opp r R q = q ˙ G
57 56 eqcomd φ q B q ˙ G = G Poly 1 opp r R q
58 57 oveq2d φ q B F - ˙ q ˙ G = F - ˙ G Poly 1 opp r R q
59 58 fveq2d φ q B D F - ˙ q ˙ G = D F - ˙ G Poly 1 opp r R q
60 59 breq1d φ q B D F - ˙ q ˙ G < D G D F - ˙ G Poly 1 opp r R q < D G
61 60 reubidva φ ∃! q B D F - ˙ q ˙ G < D G ∃! q B D F - ˙ G Poly 1 opp r R q < D G
62 51 61 mpbird φ ∃! q B D F - ˙ q ˙ G < D G