Step |
Hyp |
Ref |
Expression |
1 |
|
ply1divalg.p |
|
2 |
|
ply1divalg.d |
|
3 |
|
ply1divalg.b |
|
4 |
|
ply1divalg.m |
|
5 |
|
ply1divalg.z |
|
6 |
|
ply1divalg.t |
|
7 |
|
ply1divalg.r1 |
|
8 |
|
ply1divalg.f |
|
9 |
|
ply1divalg.g1 |
|
10 |
|
ply1divalg.g2 |
|
11 |
|
ply1divmo.g3 |
|
12 |
|
ply1divmo.e |
|
13 |
7
|
adantr |
|
14 |
1
|
ply1ring |
|
15 |
13 14
|
syl |
|
16 |
|
ringgrp |
|
17 |
15 16
|
syl |
|
18 |
8
|
adantr |
|
19 |
9
|
adantr |
|
20 |
|
simprl |
|
21 |
3 6
|
ringcl |
|
22 |
15 19 20 21
|
syl3anc |
|
23 |
3 4
|
grpsubcl |
|
24 |
17 18 22 23
|
syl3anc |
|
25 |
|
simprr |
|
26 |
3 6
|
ringcl |
|
27 |
15 19 25 26
|
syl3anc |
|
28 |
3 4
|
grpsubcl |
|
29 |
17 18 27 28
|
syl3anc |
|
30 |
3 4
|
grpsubcl |
|
31 |
17 24 29 30
|
syl3anc |
|
32 |
2 1 3
|
deg1xrcl |
|
33 |
31 32
|
syl |
|
34 |
2 1 3
|
deg1xrcl |
|
35 |
29 34
|
syl |
|
36 |
2 1 3
|
deg1xrcl |
|
37 |
24 36
|
syl |
|
38 |
35 37
|
ifcld |
|
39 |
2 1 3
|
deg1xrcl |
|
40 |
19 39
|
syl |
|
41 |
33 38 40
|
3jca |
|
42 |
41
|
adantr |
|
43 |
1 2 13 3 4 24 29
|
deg1suble |
|
44 |
43
|
adantr |
|
45 |
|
xrmaxlt |
|
46 |
37 35 40 45
|
syl3anc |
|
47 |
46
|
biimpar |
|
48 |
44 47
|
jca |
|
49 |
|
xrlelttr |
|
50 |
42 48 49
|
sylc |
|
51 |
50
|
ex |
|
52 |
2 1 5 3
|
deg1nn0cl |
|
53 |
7 9 10 52
|
syl3anc |
|
54 |
53
|
ad2antrr |
|
55 |
54
|
nn0red |
|
56 |
7
|
ad2antrr |
|
57 |
3 4
|
grpsubcl |
|
58 |
17 25 20 57
|
syl3anc |
|
59 |
58
|
adantr |
|
60 |
3 5 4
|
grpsubeq0 |
|
61 |
17 25 20 60
|
syl3anc |
|
62 |
|
equcom |
|
63 |
61 62
|
bitrdi |
|
64 |
63
|
necon3bid |
|
65 |
64
|
biimpar |
|
66 |
2 1 5 3
|
deg1nn0cl |
|
67 |
56 59 65 66
|
syl3anc |
|
68 |
|
nn0addge1 |
|
69 |
55 67 68
|
syl2anc |
|
70 |
9
|
ad2antrr |
|
71 |
10
|
ad2antrr |
|
72 |
11
|
ad2antrr |
|
73 |
2 1 12 3 6 5 56 70 71 72 59 65
|
deg1mul2 |
|
74 |
69 73
|
breqtrrd |
|
75 |
|
ringabl |
|
76 |
15 75
|
syl |
|
77 |
3 4 76 18 22 27
|
ablnnncan1 |
|
78 |
3 6 4 15 19 25 20
|
ringsubdi |
|
79 |
77 78
|
eqtr4d |
|
80 |
79
|
fveq2d |
|
81 |
80
|
adantr |
|
82 |
74 81
|
breqtrrd |
|
83 |
40 33
|
xrlenltd |
|
84 |
83
|
adantr |
|
85 |
82 84
|
mpbid |
|
86 |
85
|
ex |
|
87 |
86
|
necon4ad |
|
88 |
51 87
|
syld |
|
89 |
88
|
ralrimivva |
|
90 |
|
oveq2 |
|
91 |
90
|
oveq2d |
|
92 |
91
|
fveq2d |
|
93 |
92
|
breq1d |
|
94 |
93
|
rmo4 |
|
95 |
89 94
|
sylibr |
|