Metamath Proof Explorer


Theorem ply1fermltl

Description: Fermat's little theorem for polynomials. If P is prime, Then ( X + A ) ^ P = ( ( X ^ P ) + A ) modulo P . (Contributed by Thierry Arnoux, 24-Jul-2024)

Ref Expression
Hypotheses ply1fermltl.z Z = /P
ply1fermltl.w W = Poly 1 Z
ply1fermltl.x X = var 1 Z
ply1fermltl.l + ˙ = + W
ply1fermltl.n N = mulGrp W
ply1fermltl.t × ˙ = N
ply1fermltl.c C = algSc W
ply1fermltl.a A = C ℤRHom Z E
ply1fermltl.p φ P
ply1fermltl.1 φ E
Assertion ply1fermltl φ P × ˙ X + ˙ A = P × ˙ X + ˙ A

Proof

Step Hyp Ref Expression
1 ply1fermltl.z Z = /P
2 ply1fermltl.w W = Poly 1 Z
3 ply1fermltl.x X = var 1 Z
4 ply1fermltl.l + ˙ = + W
5 ply1fermltl.n N = mulGrp W
6 ply1fermltl.t × ˙ = N
7 ply1fermltl.c C = algSc W
8 ply1fermltl.a A = C ℤRHom Z E
9 ply1fermltl.p φ P
10 ply1fermltl.1 φ E
11 eqid chr Z = chr Z
12 prmnn P P
13 nnnn0 P P 0
14 1 zncrng P 0 Z CRing
15 9 12 13 14 4syl φ Z CRing
16 1 znchr P 0 chr Z = P
17 9 12 13 16 4syl φ chr Z = P
18 17 9 eqeltrd φ chr Z
19 2 3 4 5 6 7 8 11 15 18 10 ply1fermltlchr φ chr Z × ˙ X + ˙ A = chr Z × ˙ X + ˙ A
20 17 oveq1d φ chr Z × ˙ X + ˙ A = P × ˙ X + ˙ A
21 17 oveq1d φ chr Z × ˙ X = P × ˙ X
22 21 oveq1d φ chr Z × ˙ X + ˙ A = P × ˙ X + ˙ A
23 19 20 22 3eqtr3d φ P × ˙ X + ˙ A = P × ˙ X + ˙ A