Metamath Proof Explorer


Theorem ply1fermltlchr

Description: Fermat's little theorem for polynomials in a commutative ring F of characteristic P prime: we have the polynomial equation ( X + A ) ^ P = ( ( X ^ P ) + A ) . (Contributed by Thierry Arnoux, 9-Jan-2025)

Ref Expression
Hypotheses ply1fermltlchr.w W = Poly 1 F
ply1fermltlchr.x X = var 1 F
ply1fermltlchr.l + ˙ = + W
ply1fermltlchr.n N = mulGrp W
ply1fermltlchr.t × ˙ = N
ply1fermltlchr.c C = algSc W
ply1fermltlchr.a A = C ℤRHom F E
ply1fermltlchr.p P = chr F
ply1fermltlchr.f φ F CRing
ply1fermltlchr.1 φ P
ply1fermltlchr.2 φ E
Assertion ply1fermltlchr φ P × ˙ X + ˙ A = P × ˙ X + ˙ A

Proof

Step Hyp Ref Expression
1 ply1fermltlchr.w W = Poly 1 F
2 ply1fermltlchr.x X = var 1 F
3 ply1fermltlchr.l + ˙ = + W
4 ply1fermltlchr.n N = mulGrp W
5 ply1fermltlchr.t × ˙ = N
6 ply1fermltlchr.c C = algSc W
7 ply1fermltlchr.a A = C ℤRHom F E
8 ply1fermltlchr.p P = chr F
9 ply1fermltlchr.f φ F CRing
10 ply1fermltlchr.1 φ P
11 ply1fermltlchr.2 φ E
12 eqid Base W = Base W
13 4 fveq2i N = mulGrp W
14 5 13 eqtri × ˙ = mulGrp W
15 eqid chr W = chr W
16 1 ply1crng F CRing W CRing
17 9 16 syl φ W CRing
18 1 ply1chr F CRing chr W = chr F
19 9 18 syl φ chr W = chr F
20 19 8 eqtr4di φ chr W = P
21 20 10 eqeltrd φ chr W
22 9 crngringd φ F Ring
23 2 1 12 vr1cl F Ring X Base W
24 22 23 syl φ X Base W
25 eqid ℤRHom F = ℤRHom F
26 25 zrhrhm F Ring ℤRHom F ring RingHom F
27 zringbas = Base ring
28 eqid Base F = Base F
29 27 28 rhmf ℤRHom F ring RingHom F ℤRHom F : Base F
30 22 26 29 3syl φ ℤRHom F : Base F
31 30 11 ffvelcdmd φ ℤRHom F E Base F
32 1 6 28 12 ply1sclcl F Ring ℤRHom F E Base F C ℤRHom F E Base W
33 22 31 32 syl2anc φ C ℤRHom F E Base W
34 7 33 eqeltrid φ A Base W
35 12 3 14 15 17 21 24 34 freshmansdream φ chr W × ˙ X + ˙ A = chr W × ˙ X + ˙ chr W × ˙ A
36 20 oveq1d φ chr W × ˙ X + ˙ A = P × ˙ X + ˙ A
37 20 oveq1d φ chr W × ˙ X = P × ˙ X
38 20 oveq1d φ chr W × ˙ A = P × ˙ A
39 1 ply1assa F CRing W AssAlg
40 eqid Scalar W = Scalar W
41 6 40 asclrhm W AssAlg C Scalar W RingHom W
42 9 39 41 3syl φ C Scalar W RingHom W
43 9 crnggrpd φ F Grp
44 1 ply1sca F Grp F = Scalar W
45 43 44 syl φ F = Scalar W
46 45 oveq1d φ F RingHom W = Scalar W RingHom W
47 42 46 eleqtrrd φ C F RingHom W
48 eqid mulGrp F = mulGrp F
49 48 4 rhmmhm C F RingHom W C mulGrp F MndHom N
50 47 49 syl φ C mulGrp F MndHom N
51 prmnn P P
52 nnnn0 P P 0
53 10 51 52 3syl φ P 0
54 48 28 mgpbas Base F = Base mulGrp F
55 eqid mulGrp F = mulGrp F
56 54 55 5 mhmmulg C mulGrp F MndHom N P 0 ℤRHom F E Base F C P mulGrp F ℤRHom F E = P × ˙ C ℤRHom F E
57 50 53 31 56 syl3anc φ C P mulGrp F ℤRHom F E = P × ˙ C ℤRHom F E
58 7 a1i φ A = C ℤRHom F E
59 58 oveq2d φ P × ˙ A = P × ˙ C ℤRHom F E
60 57 59 eqtr4d φ C P mulGrp F ℤRHom F E = P × ˙ A
61 eqid ℤRHom F E = ℤRHom F E
62 8 28 55 61 10 11 9 fermltlchr φ P mulGrp F ℤRHom F E = ℤRHom F E
63 62 fveq2d φ C P mulGrp F ℤRHom F E = C ℤRHom F E
64 63 7 eqtr4di φ C P mulGrp F ℤRHom F E = A
65 38 60 64 3eqtr2d φ chr W × ˙ A = A
66 37 65 oveq12d φ chr W × ˙ X + ˙ chr W × ˙ A = P × ˙ X + ˙ A
67 35 36 66 3eqtr3d φ P × ˙ X + ˙ A = P × ˙ X + ˙ A