Metamath Proof Explorer


Theorem ply1frcl

Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019)

Ref Expression
Hypothesis ply1frcl.q Q = ran S evalSub 1 R
Assertion ply1frcl X Q S V R 𝒫 Base S

Proof

Step Hyp Ref Expression
1 ply1frcl.q Q = ran S evalSub 1 R
2 ne0i X ran S evalSub 1 R ran S evalSub 1 R
3 2 1 eleq2s X Q ran S evalSub 1 R
4 rneq S evalSub 1 R = ran S evalSub 1 R = ran
5 rn0 ran =
6 4 5 eqtrdi S evalSub 1 R = ran S evalSub 1 R =
7 6 necon3i ran S evalSub 1 R S evalSub 1 R
8 n0 S evalSub 1 R e e S evalSub 1 R
9 df-evls1 evalSub 1 = s V , r 𝒫 Base s Base s / b x b b 1 𝑜 x y b 1 𝑜 × y 1 𝑜 evalSub s r
10 9 dmmpossx dom evalSub 1 s V s × 𝒫 Base s
11 elfvdm e evalSub 1 S R S R dom evalSub 1
12 df-ov S evalSub 1 R = evalSub 1 S R
13 11 12 eleq2s e S evalSub 1 R S R dom evalSub 1
14 10 13 sselid e S evalSub 1 R S R s V s × 𝒫 Base s
15 fveq2 s = S Base s = Base S
16 15 pweqd s = S 𝒫 Base s = 𝒫 Base S
17 16 opeliunxp2 S R s V s × 𝒫 Base s S V R 𝒫 Base S
18 14 17 sylib e S evalSub 1 R S V R 𝒫 Base S
19 18 exlimiv e e S evalSub 1 R S V R 𝒫 Base S
20 8 19 sylbi S evalSub 1 R S V R 𝒫 Base S
21 3 7 20 3syl X Q S V R 𝒫 Base S