Metamath Proof Explorer


Theorem ply1gsumz

Description: If a polynomial given as a sum of scaled monomials by factors A is the zero polynomial, then all factors A are zero. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses ply1gsumz.p P = Poly 1 R
ply1gsumz.b B = Base R
ply1gsumz.n φ N 0
ply1gsumz.r φ R Ring
ply1gsumz.f F = n 0 ..^ N n mulGrp P var 1 R
ply1gsumz.1 0 ˙ = 0 R
ply1gsumz.z Z = 0 P
ply1gsumz.a φ A : 0 ..^ N B
ply1gsumz.s φ P A P f F = Z
Assertion ply1gsumz φ A = 0 ..^ N × 0 ˙

Proof

Step Hyp Ref Expression
1 ply1gsumz.p P = Poly 1 R
2 ply1gsumz.b B = Base R
3 ply1gsumz.n φ N 0
4 ply1gsumz.r φ R Ring
5 ply1gsumz.f F = n 0 ..^ N n mulGrp P var 1 R
6 ply1gsumz.1 0 ˙ = 0 R
7 ply1gsumz.z Z = 0 P
8 ply1gsumz.a φ A : 0 ..^ N B
9 ply1gsumz.s φ P A P f F = Z
10 8 ffnd φ A Fn 0 ..^ N
11 1 ply1ring R Ring P Ring
12 eqid Base P = Base P
13 12 7 ring0cl P Ring Z Base P
14 4 11 13 3syl φ Z Base P
15 eqid coe 1 Z = coe 1 Z
16 15 12 1 2 coe1f Z Base P coe 1 Z : 0 B
17 14 16 syl φ coe 1 Z : 0 B
18 17 ffnd φ coe 1 Z Fn 0
19 fzo0ssnn0 0 ..^ N 0
20 19 a1i φ 0 ..^ N 0
21 18 20 fnssresd φ coe 1 Z 0 ..^ N Fn 0 ..^ N
22 simpr φ j 0 ..^ N j 0 ..^ N
23 22 fvresd φ j 0 ..^ N coe 1 Z 0 ..^ N j = coe 1 Z j
24 elfzonn0 j 0 ..^ N j 0
25 9 14 eqeltrd φ P A P f F Base P
26 eqid coe 1 P A P f F = coe 1 P A P f F
27 1 12 26 15 ply1coe1eq R Ring P A P f F Base P Z Base P j 0 coe 1 P A P f F j = coe 1 Z j P A P f F = Z
28 27 biimpar R Ring P A P f F Base P Z Base P P A P f F = Z j 0 coe 1 P A P f F j = coe 1 Z j
29 4 25 14 9 28 syl31anc φ j 0 coe 1 P A P f F j = coe 1 Z j
30 29 r19.21bi φ j 0 coe 1 P A P f F j = coe 1 Z j
31 24 30 sylan2 φ j 0 ..^ N coe 1 P A P f F j = coe 1 Z j
32 10 adantr φ j 0 ..^ N A Fn 0 ..^ N
33 nfv n φ
34 ovexd φ n 0 ..^ N n mulGrp P var 1 R V
35 33 34 5 fnmptd φ F Fn 0 ..^ N
36 35 adantr φ j 0 ..^ N F Fn 0 ..^ N
37 ovexd φ j 0 ..^ N 0 ..^ N V
38 inidm 0 ..^ N 0 ..^ N = 0 ..^ N
39 eqidd φ j 0 ..^ N i 0 ..^ N A i = A i
40 oveq1 n = i n mulGrp P var 1 R = i mulGrp P var 1 R
41 simpr φ j 0 ..^ N i 0 ..^ N i 0 ..^ N
42 ovexd φ j 0 ..^ N i 0 ..^ N i mulGrp P var 1 R V
43 5 40 41 42 fvmptd3 φ j 0 ..^ N i 0 ..^ N F i = i mulGrp P var 1 R
44 32 36 37 37 38 39 43 offval φ j 0 ..^ N A P f F = i 0 ..^ N A i P i mulGrp P var 1 R
45 44 oveq2d φ j 0 ..^ N P A P f F = P i 0 ..^ N A i P i mulGrp P var 1 R
46 45 fveq2d φ j 0 ..^ N coe 1 P A P f F = coe 1 P i 0 ..^ N A i P i mulGrp P var 1 R
47 46 fveq1d φ j 0 ..^ N coe 1 P A P f F j = coe 1 P i 0 ..^ N A i P i mulGrp P var 1 R j
48 eqid var 1 R = var 1 R
49 eqid mulGrp P = mulGrp P
50 4 adantr φ j 0 ..^ N R Ring
51 eqid P = P
52 8 adantr φ j 0 ..^ N A : 0 ..^ N B
53 52 ffvelcdmda φ j 0 ..^ N i 0 ..^ N A i B
54 53 ralrimiva φ j 0 ..^ N i 0 ..^ N A i B
55 3 adantr φ j 0 ..^ N N 0
56 fveq2 i = j A i = A j
57 1 12 48 49 50 2 51 6 54 22 55 56 gsummoncoe1fzo φ j 0 ..^ N coe 1 P i 0 ..^ N A i P i mulGrp P var 1 R j = A j
58 47 57 eqtrd φ j 0 ..^ N coe 1 P A P f F j = A j
59 23 31 58 3eqtr2rd φ j 0 ..^ N A j = coe 1 Z 0 ..^ N j
60 10 21 59 eqfnfvd φ A = coe 1 Z 0 ..^ N
61 1 7 6 coe1z R Ring coe 1 Z = 0 × 0 ˙
62 4 61 syl φ coe 1 Z = 0 × 0 ˙
63 62 reseq1d φ coe 1 Z 0 ..^ N = 0 × 0 ˙ 0 ..^ N
64 60 63 eqtrd φ A = 0 × 0 ˙ 0 ..^ N
65 xpssres 0 ..^ N 0 0 × 0 ˙ 0 ..^ N = 0 ..^ N × 0 ˙
66 19 65 ax-mp 0 × 0 ˙ 0 ..^ N = 0 ..^ N × 0 ˙
67 64 66 eqtrdi φ A = 0 ..^ N × 0 ˙