Step |
Hyp |
Ref |
Expression |
1 |
|
ply1gsumz.p |
|
2 |
|
ply1gsumz.b |
|
3 |
|
ply1gsumz.n |
|
4 |
|
ply1gsumz.r |
|
5 |
|
ply1gsumz.f |
|
6 |
|
ply1gsumz.1 |
|
7 |
|
ply1gsumz.z |
|
8 |
|
ply1gsumz.a |
|
9 |
|
ply1gsumz.s |
|
10 |
8
|
ffnd |
|
11 |
1
|
ply1ring |
|
12 |
|
eqid |
|
13 |
12 7
|
ring0cl |
|
14 |
4 11 13
|
3syl |
|
15 |
|
eqid |
|
16 |
15 12 1 2
|
coe1f |
|
17 |
14 16
|
syl |
|
18 |
17
|
ffnd |
|
19 |
|
fzo0ssnn0 |
|
20 |
19
|
a1i |
|
21 |
18 20
|
fnssresd |
|
22 |
|
simpr |
|
23 |
22
|
fvresd |
|
24 |
|
elfzonn0 |
|
25 |
9 14
|
eqeltrd |
|
26 |
|
eqid |
|
27 |
1 12 26 15
|
ply1coe1eq |
|
28 |
27
|
biimpar |
|
29 |
4 25 14 9 28
|
syl31anc |
|
30 |
29
|
r19.21bi |
|
31 |
24 30
|
sylan2 |
|
32 |
10
|
adantr |
|
33 |
|
nfv |
|
34 |
|
ovexd |
|
35 |
33 34 5
|
fnmptd |
|
36 |
35
|
adantr |
|
37 |
|
ovexd |
|
38 |
|
inidm |
|
39 |
|
eqidd |
|
40 |
|
oveq1 |
|
41 |
|
simpr |
|
42 |
|
ovexd |
|
43 |
5 40 41 42
|
fvmptd3 |
|
44 |
32 36 37 37 38 39 43
|
offval |
|
45 |
44
|
oveq2d |
|
46 |
45
|
fveq2d |
|
47 |
46
|
fveq1d |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
4
|
adantr |
|
51 |
|
eqid |
|
52 |
8
|
adantr |
|
53 |
52
|
ffvelcdmda |
|
54 |
53
|
ralrimiva |
|
55 |
3
|
adantr |
|
56 |
|
fveq2 |
|
57 |
1 12 48 49 50 2 51 6 54 22 55 56
|
gsummoncoe1fzo |
|
58 |
47 57
|
eqtrd |
|
59 |
23 31 58
|
3eqtr2rd |
|
60 |
10 21 59
|
eqfnfvd |
|
61 |
1 7 6
|
coe1z |
|
62 |
4 61
|
syl |
|
63 |
62
|
reseq1d |
|
64 |
60 63
|
eqtrd |
|
65 |
|
xpssres |
|
66 |
19 65
|
ax-mp |
|
67 |
64 66
|
eqtrdi |
|