Metamath Proof Explorer


Theorem ply1idom

Description: The ring of univariate polynomials over an integral domain is itself an integral domain. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypothesis ply1domn.p P = Poly 1 R
Assertion ply1idom R IDomn P IDomn

Proof

Step Hyp Ref Expression
1 ply1domn.p P = Poly 1 R
2 1 ply1crng R CRing P CRing
3 1 ply1domn R Domn P Domn
4 2 3 anim12i R CRing R Domn P CRing P Domn
5 isidom R IDomn R CRing R Domn
6 isidom P IDomn P CRing P Domn
7 4 5 6 3imtr4i R IDomn P IDomn