Metamath Proof Explorer


Theorem ply1idom

Description: The ring of univariate polynomials over an integral domain is itself an integral domain. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypothesis ply1domn.p P=Poly1R
Assertion ply1idom RIDomnPIDomn

Proof

Step Hyp Ref Expression
1 ply1domn.p P=Poly1R
2 1 ply1crng RCRingPCRing
3 1 ply1domn RDomnPDomn
4 2 3 anim12i RCRingRDomnPCRingPDomn
5 isidom RIDomnRCRingRDomn
6 isidom PIDomnPCRingPDomn
7 4 5 6 3imtr4i RIDomnPIDomn