Metamath Proof Explorer


Theorem ply1lmod

Description: Univariate polynomials form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypothesis ply1lmod.p P = Poly 1 R
Assertion ply1lmod R Ring P LMod

Proof

Step Hyp Ref Expression
1 ply1lmod.p P = Poly 1 R
2 eqid PwSer 1 R = PwSer 1 R
3 2 psr1lmod R Ring PwSer 1 R LMod
4 eqid Poly 1 R = Poly 1 R
5 eqid Base Poly 1 R = Base Poly 1 R
6 4 2 5 ply1bas Base Poly 1 R = Base 1 𝑜 mPoly R
7 4 2 5 ply1lss R Ring Base Poly 1 R LSubSp PwSer 1 R
8 6 7 eqeltrrid R Ring Base 1 𝑜 mPoly R LSubSp PwSer 1 R
9 1 2 ply1val P = PwSer 1 R 𝑠 Base 1 𝑜 mPoly R
10 eqid LSubSp PwSer 1 R = LSubSp PwSer 1 R
11 9 10 lsslmod PwSer 1 R LMod Base 1 𝑜 mPoly R LSubSp PwSer 1 R P LMod
12 3 8 11 syl2anc R Ring P LMod