Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomials
ply1lmod
Next ⟩
ply1sca
Metamath Proof Explorer
Ascii
Unicode
Theorem
ply1lmod
Description:
Univariate polynomials form a left module.
(Contributed by
Stefan O'Rear
, 26-Mar-2015)
Ref
Expression
Hypothesis
ply1lmod.p
⊢
P
=
Poly
1
⁡
R
Assertion
ply1lmod
⊢
R
∈
Ring
→
P
∈
LMod
Proof
Step
Hyp
Ref
Expression
1
ply1lmod.p
⊢
P
=
Poly
1
⁡
R
2
eqid
⊢
PwSer
1
⁡
R
=
PwSer
1
⁡
R
3
2
psr1lmod
⊢
R
∈
Ring
→
PwSer
1
⁡
R
∈
LMod
4
eqid
⊢
Poly
1
⁡
R
=
Poly
1
⁡
R
5
eqid
⊢
Base
Poly
1
⁡
R
=
Base
Poly
1
⁡
R
6
4
2
5
ply1bas
⊢
Base
Poly
1
⁡
R
=
Base
1
𝑜
mPoly
R
7
4
2
5
ply1lss
⊢
R
∈
Ring
→
Base
Poly
1
⁡
R
∈
LSubSp
⁡
PwSer
1
⁡
R
8
6
7
eqeltrrid
⊢
R
∈
Ring
→
Base
1
𝑜
mPoly
R
∈
LSubSp
⁡
PwSer
1
⁡
R
9
1
2
ply1val
⊢
P
=
PwSer
1
⁡
R
↾
𝑠
Base
1
𝑜
mPoly
R
10
eqid
⊢
LSubSp
⁡
PwSer
1
⁡
R
=
LSubSp
⁡
PwSer
1
⁡
R
11
9
10
lsslmod
⊢
PwSer
1
⁡
R
∈
LMod
∧
Base
1
𝑜
mPoly
R
∈
LSubSp
⁡
PwSer
1
⁡
R
→
P
∈
LMod
12
3
8
11
syl2anc
⊢
R
∈
Ring
→
P
∈
LMod