Metamath Proof Explorer


Theorem ply1lmod

Description: Univariate polynomials form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypothesis ply1lmod.p P=Poly1R
Assertion ply1lmod RRingPLMod

Proof

Step Hyp Ref Expression
1 ply1lmod.p P=Poly1R
2 eqid PwSer1R=PwSer1R
3 2 psr1lmod RRingPwSer1RLMod
4 eqid Poly1R=Poly1R
5 eqid BasePoly1R=BasePoly1R
6 4 2 5 ply1bas BasePoly1R=Base1𝑜mPolyR
7 4 2 5 ply1lss RRingBasePoly1RLSubSpPwSer1R
8 6 7 eqeltrrid RRingBase1𝑜mPolyRLSubSpPwSer1R
9 1 2 ply1val P=PwSer1R𝑠Base1𝑜mPolyR
10 eqid LSubSpPwSer1R=LSubSpPwSer1R
11 9 10 lsslmod PwSer1RLModBase1𝑜mPolyRLSubSpPwSer1RPLMod
12 3 8 11 syl2anc RRingPLMod