Metamath Proof Explorer


Theorem ply1lvec

Description: In a division ring, the univariate polynomials form a vector space. (Contributed by Thierry Arnoux, 19-Feb-2025)

Ref Expression
Hypotheses ply1lvec.p P = Poly 1 R
ply1lvec.r φ R DivRing
Assertion ply1lvec φ P LVec

Proof

Step Hyp Ref Expression
1 ply1lvec.p P = Poly 1 R
2 ply1lvec.r φ R DivRing
3 2 drngringd φ R Ring
4 1 ply1lmod R Ring P LMod
5 3 4 syl φ P LMod
6 1 ply1sca R DivRing R = Scalar P
7 2 6 syl φ R = Scalar P
8 7 2 eqeltrrd φ Scalar P DivRing
9 eqid Scalar P = Scalar P
10 9 islvec P LVec P LMod Scalar P DivRing
11 5 8 10 sylanbrc φ P LVec