Metamath Proof Explorer


Theorem ply1moncl

Description: Closure of the expression for a univariate primitive monomial. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses ply1moncl.p P = Poly 1 R
ply1moncl.x X = var 1 R
ply1moncl.n N = mulGrp P
ply1moncl.e × ˙ = N
ply1moncl.b B = Base P
Assertion ply1moncl R Ring D 0 D × ˙ X B

Proof

Step Hyp Ref Expression
1 ply1moncl.p P = Poly 1 R
2 ply1moncl.x X = var 1 R
3 ply1moncl.n N = mulGrp P
4 ply1moncl.e × ˙ = N
5 ply1moncl.b B = Base P
6 3 5 mgpbas B = Base N
7 1 ply1ring R Ring P Ring
8 3 ringmgp P Ring N Mnd
9 7 8 syl R Ring N Mnd
10 9 adantr R Ring D 0 N Mnd
11 simpr R Ring D 0 D 0
12 2 1 5 vr1cl R Ring X B
13 12 adantr R Ring D 0 X B
14 6 4 10 11 13 mulgnn0cld R Ring D 0 D × ˙ X B