Metamath Proof Explorer


Theorem ply1moncl

Description: Closure of the expression for a univariate primitive monomial. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses ply1moncl.p P = Poly 1 R
ply1moncl.x X = var 1 R
ply1moncl.n N = mulGrp P
ply1moncl.e × ˙ = N
ply1moncl.b B = Base P
Assertion ply1moncl R Ring D 0 D × ˙ X B

Proof

Step Hyp Ref Expression
1 ply1moncl.p P = Poly 1 R
2 ply1moncl.x X = var 1 R
3 ply1moncl.n N = mulGrp P
4 ply1moncl.e × ˙ = N
5 ply1moncl.b B = Base P
6 1 ply1ring R Ring P Ring
7 3 ringmgp P Ring N Mnd
8 6 7 syl R Ring N Mnd
9 8 adantr R Ring D 0 N Mnd
10 simpr R Ring D 0 D 0
11 2 1 5 vr1cl R Ring X B
12 11 adantr R Ring D 0 X B
13 3 5 mgpbas B = Base N
14 13 4 mulgnn0cl N Mnd D 0 X B D × ˙ X B
15 9 10 12 14 syl3anc R Ring D 0 D × ˙ X B