Step |
Hyp |
Ref |
Expression |
1 |
|
ply1moneq.p |
|
2 |
|
ply1moneq.x |
|
3 |
|
ply1moneq.e |
|
4 |
|
ply1moneq.r |
|
5 |
|
ply1moneq.m |
|
6 |
|
ply1moneq.n |
|
7 |
|
nzrring |
|
8 |
4 7
|
syl |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
1 2 3 8 5 9 10
|
coe1mon |
|
12 |
|
fvexd |
|
13 |
|
fvexd |
|
14 |
12 13
|
ifcld |
|
15 |
11 14
|
fvmpt2d |
|
16 |
1 2 3 8 6 9 10
|
coe1mon |
|
17 |
12 13
|
ifcld |
|
18 |
16 17
|
fvmpt2d |
|
19 |
15 18
|
eqeq12d |
|
20 |
10 9
|
nzrnz |
|
21 |
4 20
|
syl |
|
22 |
21
|
adantr |
|
23 |
|
ifnebib |
|
24 |
22 23
|
syl |
|
25 |
19 24
|
bitrd |
|
26 |
25
|
ralbidva |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
1 2 27 3 28
|
ply1moncl |
|
30 |
8 5 29
|
syl2anc |
|
31 |
1 2 27 3 28
|
ply1moncl |
|
32 |
8 6 31
|
syl2anc |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
1 28 33 34
|
ply1coe1eq |
|
36 |
8 30 32 35
|
syl3anc |
|
37 |
5 6
|
eqelbid |
|
38 |
26 36 37
|
3bitr3d |
|