Metamath Proof Explorer


Theorem ply1nz

Description: Univariate polynomials over a nonzero ring are a nonzero ring. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypothesis ply1domn.p P = Poly 1 R
Assertion ply1nz R NzRing P NzRing

Proof

Step Hyp Ref Expression
1 ply1domn.p P = Poly 1 R
2 nzrring R NzRing R Ring
3 1 ply1ring R Ring P Ring
4 2 3 syl R NzRing P Ring
5 eqid algSc P = algSc P
6 eqid Base R = Base R
7 eqid Base P = Base P
8 1 5 6 7 ply1sclf R Ring algSc P : Base R Base P
9 2 8 syl R NzRing algSc P : Base R Base P
10 eqid 1 R = 1 R
11 6 10 ringidcl R Ring 1 R Base R
12 2 11 syl R NzRing 1 R Base R
13 9 12 ffvelrnd R NzRing algSc P 1 R Base P
14 eqid 0 R = 0 R
15 10 14 nzrnz R NzRing 1 R 0 R
16 eqid 0 P = 0 P
17 1 5 14 16 6 ply1scln0 R Ring 1 R Base R 1 R 0 R algSc P 1 R 0 P
18 2 12 15 17 syl3anc R NzRing algSc P 1 R 0 P
19 eldifsn algSc P 1 R Base P 0 P algSc P 1 R Base P algSc P 1 R 0 P
20 13 18 19 sylanbrc R NzRing algSc P 1 R Base P 0 P
21 16 7 ringelnzr P Ring algSc P 1 R Base P 0 P P NzRing
22 4 20 21 syl2anc R NzRing P NzRing