Metamath Proof Explorer


Theorem ply1plusg

Description: Value of addition in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses ply1plusg.y Y = Poly 1 R
ply1plusg.s S = 1 𝑜 mPoly R
ply1plusg.p + ˙ = + Y
Assertion ply1plusg + ˙ = + S

Proof

Step Hyp Ref Expression
1 ply1plusg.y Y = Poly 1 R
2 ply1plusg.s S = 1 𝑜 mPoly R
3 ply1plusg.p + ˙ = + Y
4 eqid 1 𝑜 mPwSer R = 1 𝑜 mPwSer R
5 eqid + S = + S
6 2 4 5 mplplusg + S = + 1 𝑜 mPwSer R
7 eqid PwSer 1 R = PwSer 1 R
8 eqid + PwSer 1 R = + PwSer 1 R
9 7 4 8 psr1plusg + PwSer 1 R = + 1 𝑜 mPwSer R
10 fvex Base 1 𝑜 mPoly R V
11 1 7 ply1val Y = PwSer 1 R 𝑠 Base 1 𝑜 mPoly R
12 11 8 ressplusg Base 1 𝑜 mPoly R V + PwSer 1 R = + Y
13 10 12 ax-mp + PwSer 1 R = + Y
14 6 9 13 3eqtr2i + S = + Y
15 3 14 eqtr4i + ˙ = + S