Metamath Proof Explorer


Theorem ply1plusgfvi

Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Assertion ply1plusgfvi + Poly 1 R = + Poly 1 I R

Proof

Step Hyp Ref Expression
1 fvi R V I R = R
2 1 fveq2d R V Poly 1 I R = Poly 1 R
3 2 fveq2d R V + Poly 1 I R = + Poly 1 R
4 eqid Poly 1 = Poly 1
5 eqid 1 𝑜 mPoly = 1 𝑜 mPoly
6 eqid + Poly 1 = + Poly 1
7 4 5 6 ply1plusg + Poly 1 = + 1 𝑜 mPoly
8 eqid 1 𝑜 mPwSer = 1 𝑜 mPwSer
9 eqid + 1 𝑜 mPoly = + 1 𝑜 mPoly
10 5 8 9 mplplusg + 1 𝑜 mPoly = + 1 𝑜 mPwSer
11 base0 = Base
12 psr1baslem 0 1 𝑜 = a 0 1 𝑜 | a -1 Fin
13 eqid Base 1 𝑜 mPwSer = Base 1 𝑜 mPwSer
14 1on 1 𝑜 On
15 14 a1i 1 𝑜 On
16 8 11 12 13 15 psrbas Base 1 𝑜 mPwSer = 0 1 𝑜
17 16 mptru Base 1 𝑜 mPwSer = 0 1 𝑜
18 0nn0 0 0
19 18 fconst6 1 𝑜 × 0 : 1 𝑜 0
20 nn0ex 0 V
21 1oex 1 𝑜 V
22 20 21 elmap 1 𝑜 × 0 0 1 𝑜 1 𝑜 × 0 : 1 𝑜 0
23 19 22 mpbir 1 𝑜 × 0 0 1 𝑜
24 ne0i 1 𝑜 × 0 0 1 𝑜 0 1 𝑜
25 map0b 0 1 𝑜 0 1 𝑜 =
26 23 24 25 mp2b 0 1 𝑜 =
27 17 26 eqtr2i = Base 1 𝑜 mPwSer
28 eqid + = +
29 eqid + 1 𝑜 mPwSer = + 1 𝑜 mPwSer
30 8 27 28 29 psrplusg + 1 𝑜 mPwSer = f + ×
31 xp0 × =
32 31 reseq2i f + × = f +
33 10 30 32 3eqtri + 1 𝑜 mPoly = f +
34 res0 f + =
35 df-plusg + 𝑔 = Slot 2
36 35 str0 = +
37 34 36 eqtri f + = +
38 7 33 37 3eqtri + Poly 1 = +
39 fvprc ¬ R V I R =
40 39 fveq2d ¬ R V Poly 1 I R = Poly 1
41 40 fveq2d ¬ R V + Poly 1 I R = + Poly 1
42 fvprc ¬ R V Poly 1 R =
43 42 fveq2d ¬ R V + Poly 1 R = +
44 38 41 43 3eqtr4a ¬ R V + Poly 1 I R = + Poly 1 R
45 3 44 pm2.61i + Poly 1 I R = + Poly 1 R
46 45 eqcomi + Poly 1 R = + Poly 1 I R