Metamath Proof Explorer


Theorem ply1plusgpropd

Description: Property deduction for univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses ply1baspropd.b1 φ B = Base R
ply1baspropd.b2 φ B = Base S
ply1baspropd.p φ x B y B x + R y = x + S y
Assertion ply1plusgpropd φ + Poly 1 R = + Poly 1 S

Proof

Step Hyp Ref Expression
1 ply1baspropd.b1 φ B = Base R
2 ply1baspropd.b2 φ B = Base S
3 ply1baspropd.p φ x B y B x + R y = x + S y
4 1 2 3 psrplusgpropd φ + 1 𝑜 mPwSer R = + 1 𝑜 mPwSer S
5 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
6 eqid 1 𝑜 mPwSer R = 1 𝑜 mPwSer R
7 eqid + 1 𝑜 mPoly R = + 1 𝑜 mPoly R
8 5 6 7 mplplusg + 1 𝑜 mPoly R = + 1 𝑜 mPwSer R
9 eqid 1 𝑜 mPoly S = 1 𝑜 mPoly S
10 eqid 1 𝑜 mPwSer S = 1 𝑜 mPwSer S
11 eqid + 1 𝑜 mPoly S = + 1 𝑜 mPoly S
12 9 10 11 mplplusg + 1 𝑜 mPoly S = + 1 𝑜 mPwSer S
13 4 8 12 3eqtr4g φ + 1 𝑜 mPoly R = + 1 𝑜 mPoly S
14 eqid Poly 1 R = Poly 1 R
15 eqid + Poly 1 R = + Poly 1 R
16 14 5 15 ply1plusg + Poly 1 R = + 1 𝑜 mPoly R
17 eqid Poly 1 S = Poly 1 S
18 eqid + Poly 1 S = + Poly 1 S
19 17 9 18 ply1plusg + Poly 1 S = + 1 𝑜 mPoly S
20 13 16 19 3eqtr4g φ + Poly 1 R = + Poly 1 S