Metamath Proof Explorer


Theorem ply1rem

Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout ). If a polynomial F is divided by the linear factor x - A , the remainder is equal to F ( A ) , the evaluation of the polynomial at A (interpreted as a constant polynomial). (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses ply1rem.p P = Poly 1 R
ply1rem.b B = Base P
ply1rem.k K = Base R
ply1rem.x X = var 1 R
ply1rem.m - ˙ = - P
ply1rem.a A = algSc P
ply1rem.g G = X - ˙ A N
ply1rem.o O = eval 1 R
ply1rem.1 φ R NzRing
ply1rem.2 φ R CRing
ply1rem.3 φ N K
ply1rem.4 φ F B
ply1rem.e E = rem 1p R
Assertion ply1rem φ F E G = A O F N

Proof

Step Hyp Ref Expression
1 ply1rem.p P = Poly 1 R
2 ply1rem.b B = Base P
3 ply1rem.k K = Base R
4 ply1rem.x X = var 1 R
5 ply1rem.m - ˙ = - P
6 ply1rem.a A = algSc P
7 ply1rem.g G = X - ˙ A N
8 ply1rem.o O = eval 1 R
9 ply1rem.1 φ R NzRing
10 ply1rem.2 φ R CRing
11 ply1rem.3 φ N K
12 ply1rem.4 φ F B
13 ply1rem.e E = rem 1p R
14 nzrring R NzRing R Ring
15 9 14 syl φ R Ring
16 eqid Monic 1p R = Monic 1p R
17 eqid deg 1 R = deg 1 R
18 eqid 0 R = 0 R
19 1 2 3 4 5 6 7 8 9 10 11 16 17 18 ply1remlem φ G Monic 1p R deg 1 R G = 1 O G -1 0 R = N
20 19 simp1d φ G Monic 1p R
21 eqid Unic 1p R = Unic 1p R
22 21 16 mon1puc1p R Ring G Monic 1p R G Unic 1p R
23 15 20 22 syl2anc φ G Unic 1p R
24 13 1 2 21 17 r1pdeglt R Ring F B G Unic 1p R deg 1 R F E G < deg 1 R G
25 15 12 23 24 syl3anc φ deg 1 R F E G < deg 1 R G
26 19 simp2d φ deg 1 R G = 1
27 25 26 breqtrd φ deg 1 R F E G < 1
28 1e0p1 1 = 0 + 1
29 27 28 breqtrdi φ deg 1 R F E G < 0 + 1
30 0nn0 0 0
31 nn0leltp1 deg 1 R F E G 0 0 0 deg 1 R F E G 0 deg 1 R F E G < 0 + 1
32 30 31 mpan2 deg 1 R F E G 0 deg 1 R F E G 0 deg 1 R F E G < 0 + 1
33 29 32 syl5ibrcom φ deg 1 R F E G 0 deg 1 R F E G 0
34 elsni deg 1 R F E G −∞ deg 1 R F E G = −∞
35 0xr 0 *
36 mnfle 0 * −∞ 0
37 35 36 ax-mp −∞ 0
38 34 37 eqbrtrdi deg 1 R F E G −∞ deg 1 R F E G 0
39 38 a1i φ deg 1 R F E G −∞ deg 1 R F E G 0
40 13 1 2 21 r1pcl R Ring F B G Unic 1p R F E G B
41 15 12 23 40 syl3anc φ F E G B
42 17 1 2 deg1cl F E G B deg 1 R F E G 0 −∞
43 41 42 syl φ deg 1 R F E G 0 −∞
44 elun deg 1 R F E G 0 −∞ deg 1 R F E G 0 deg 1 R F E G −∞
45 43 44 sylib φ deg 1 R F E G 0 deg 1 R F E G −∞
46 33 39 45 mpjaod φ deg 1 R F E G 0
47 17 1 2 6 deg1le0 R Ring F E G B deg 1 R F E G 0 F E G = A coe 1 F E G 0
48 15 41 47 syl2anc φ deg 1 R F E G 0 F E G = A coe 1 F E G 0
49 46 48 mpbid φ F E G = A coe 1 F E G 0
50 eqid quot 1p R = quot 1p R
51 eqid P = P
52 eqid + P = + P
53 1 2 21 50 13 51 52 r1pid R Ring F B G Unic 1p R F = F quot 1p R G P G + P F E G
54 15 12 23 53 syl3anc φ F = F quot 1p R G P G + P F E G
55 54 fveq2d φ O F = O F quot 1p R G P G + P F E G
56 eqid R 𝑠 K = R 𝑠 K
57 8 1 56 3 evl1rhm R CRing O P RingHom R 𝑠 K
58 10 57 syl φ O P RingHom R 𝑠 K
59 rhmghm O P RingHom R 𝑠 K O P GrpHom R 𝑠 K
60 58 59 syl φ O P GrpHom R 𝑠 K
61 1 ply1ring R Ring P Ring
62 15 61 syl φ P Ring
63 50 1 2 21 q1pcl R Ring F B G Unic 1p R F quot 1p R G B
64 15 12 23 63 syl3anc φ F quot 1p R G B
65 1 2 16 mon1pcl G Monic 1p R G B
66 20 65 syl φ G B
67 2 51 ringcl P Ring F quot 1p R G B G B F quot 1p R G P G B
68 62 64 66 67 syl3anc φ F quot 1p R G P G B
69 eqid + R 𝑠 K = + R 𝑠 K
70 2 52 69 ghmlin O P GrpHom R 𝑠 K F quot 1p R G P G B F E G B O F quot 1p R G P G + P F E G = O F quot 1p R G P G + R 𝑠 K O F E G
71 60 68 41 70 syl3anc φ O F quot 1p R G P G + P F E G = O F quot 1p R G P G + R 𝑠 K O F E G
72 eqid Base R 𝑠 K = Base R 𝑠 K
73 3 fvexi K V
74 73 a1i φ K V
75 2 72 rhmf O P RingHom R 𝑠 K O : B Base R 𝑠 K
76 58 75 syl φ O : B Base R 𝑠 K
77 76 68 ffvelrnd φ O F quot 1p R G P G Base R 𝑠 K
78 76 41 ffvelrnd φ O F E G Base R 𝑠 K
79 eqid + R = + R
80 56 72 9 74 77 78 79 69 pwsplusgval φ O F quot 1p R G P G + R 𝑠 K O F E G = O F quot 1p R G P G + R f O F E G
81 55 71 80 3eqtrd φ O F = O F quot 1p R G P G + R f O F E G
82 81 fveq1d φ O F N = O F quot 1p R G P G + R f O F E G N
83 56 3 72 9 74 77 pwselbas φ O F quot 1p R G P G : K K
84 83 ffnd φ O F quot 1p R G P G Fn K
85 56 3 72 9 74 78 pwselbas φ O F E G : K K
86 85 ffnd φ O F E G Fn K
87 fnfvof O F quot 1p R G P G Fn K O F E G Fn K K V N K O F quot 1p R G P G + R f O F E G N = O F quot 1p R G P G N + R O F E G N
88 84 86 74 11 87 syl22anc φ O F quot 1p R G P G + R f O F E G N = O F quot 1p R G P G N + R O F E G N
89 eqid R 𝑠 K = R 𝑠 K
90 2 51 89 rhmmul O P RingHom R 𝑠 K F quot 1p R G B G B O F quot 1p R G P G = O F quot 1p R G R 𝑠 K O G
91 58 64 66 90 syl3anc φ O F quot 1p R G P G = O F quot 1p R G R 𝑠 K O G
92 76 64 ffvelrnd φ O F quot 1p R G Base R 𝑠 K
93 76 66 ffvelrnd φ O G Base R 𝑠 K
94 eqid R = R
95 56 72 9 74 92 93 94 89 pwsmulrval φ O F quot 1p R G R 𝑠 K O G = O F quot 1p R G R f O G
96 91 95 eqtrd φ O F quot 1p R G P G = O F quot 1p R G R f O G
97 96 fveq1d φ O F quot 1p R G P G N = O F quot 1p R G R f O G N
98 56 3 72 9 74 92 pwselbas φ O F quot 1p R G : K K
99 98 ffnd φ O F quot 1p R G Fn K
100 56 3 72 9 74 93 pwselbas φ O G : K K
101 100 ffnd φ O G Fn K
102 fnfvof O F quot 1p R G Fn K O G Fn K K V N K O F quot 1p R G R f O G N = O F quot 1p R G N R O G N
103 99 101 74 11 102 syl22anc φ O F quot 1p R G R f O G N = O F quot 1p R G N R O G N
104 snidg N K N N
105 11 104 syl φ N N
106 19 simp3d φ O G -1 0 R = N
107 105 106 eleqtrrd φ N O G -1 0 R
108 fniniseg O G Fn K N O G -1 0 R N K O G N = 0 R
109 101 108 syl φ N O G -1 0 R N K O G N = 0 R
110 107 109 mpbid φ N K O G N = 0 R
111 110 simprd φ O G N = 0 R
112 111 oveq2d φ O F quot 1p R G N R O G N = O F quot 1p R G N R 0 R
113 98 11 ffvelrnd φ O F quot 1p R G N K
114 3 94 18 ringrz R Ring O F quot 1p R G N K O F quot 1p R G N R 0 R = 0 R
115 15 113 114 syl2anc φ O F quot 1p R G N R 0 R = 0 R
116 112 115 eqtrd φ O F quot 1p R G N R O G N = 0 R
117 97 103 116 3eqtrd φ O F quot 1p R G P G N = 0 R
118 117 oveq1d φ O F quot 1p R G P G N + R O F E G N = 0 R + R O F E G N
119 ringgrp R Ring R Grp
120 15 119 syl φ R Grp
121 85 11 ffvelrnd φ O F E G N K
122 3 79 18 grplid R Grp O F E G N K 0 R + R O F E G N = O F E G N
123 120 121 122 syl2anc φ 0 R + R O F E G N = O F E G N
124 88 118 123 3eqtrd φ O F quot 1p R G P G + R f O F E G N = O F E G N
125 49 fveq2d φ O F E G = O A coe 1 F E G 0
126 eqid coe 1 F E G = coe 1 F E G
127 126 2 1 3 coe1f F E G B coe 1 F E G : 0 K
128 41 127 syl φ coe 1 F E G : 0 K
129 ffvelrn coe 1 F E G : 0 K 0 0 coe 1 F E G 0 K
130 128 30 129 sylancl φ coe 1 F E G 0 K
131 8 1 3 6 evl1sca R CRing coe 1 F E G 0 K O A coe 1 F E G 0 = K × coe 1 F E G 0
132 10 130 131 syl2anc φ O A coe 1 F E G 0 = K × coe 1 F E G 0
133 125 132 eqtrd φ O F E G = K × coe 1 F E G 0
134 133 fveq1d φ O F E G N = K × coe 1 F E G 0 N
135 fvex coe 1 F E G 0 V
136 135 fvconst2 N K K × coe 1 F E G 0 N = coe 1 F E G 0
137 11 136 syl φ K × coe 1 F E G 0 N = coe 1 F E G 0
138 134 137 eqtrd φ O F E G N = coe 1 F E G 0
139 82 124 138 3eqtrd φ O F N = coe 1 F E G 0
140 139 fveq2d φ A O F N = A coe 1 F E G 0
141 49 140 eqtr4d φ F E G = A O F N