Metamath Proof Explorer


Theorem ply1remlem

Description: A term of the form x - N is linear, monic, and has exactly one zero. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses ply1rem.p P = Poly 1 R
ply1rem.b B = Base P
ply1rem.k K = Base R
ply1rem.x X = var 1 R
ply1rem.m - ˙ = - P
ply1rem.a A = algSc P
ply1rem.g G = X - ˙ A N
ply1rem.o O = eval 1 R
ply1rem.1 φ R NzRing
ply1rem.2 φ R CRing
ply1rem.3 φ N K
ply1rem.u U = Monic 1p R
ply1rem.d D = deg 1 R
ply1rem.z 0 ˙ = 0 R
Assertion ply1remlem φ G U D G = 1 O G -1 0 ˙ = N

Proof

Step Hyp Ref Expression
1 ply1rem.p P = Poly 1 R
2 ply1rem.b B = Base P
3 ply1rem.k K = Base R
4 ply1rem.x X = var 1 R
5 ply1rem.m - ˙ = - P
6 ply1rem.a A = algSc P
7 ply1rem.g G = X - ˙ A N
8 ply1rem.o O = eval 1 R
9 ply1rem.1 φ R NzRing
10 ply1rem.2 φ R CRing
11 ply1rem.3 φ N K
12 ply1rem.u U = Monic 1p R
13 ply1rem.d D = deg 1 R
14 ply1rem.z 0 ˙ = 0 R
15 nzrring R NzRing R Ring
16 9 15 syl φ R Ring
17 1 ply1ring R Ring P Ring
18 16 17 syl φ P Ring
19 ringgrp P Ring P Grp
20 18 19 syl φ P Grp
21 4 1 2 vr1cl R Ring X B
22 16 21 syl φ X B
23 1 6 3 2 ply1sclf R Ring A : K B
24 16 23 syl φ A : K B
25 24 11 ffvelrnd φ A N B
26 2 5 grpsubcl P Grp X B A N B X - ˙ A N B
27 20 22 25 26 syl3anc φ X - ˙ A N B
28 7 27 eqeltrid φ G B
29 7 fveq2i D G = D X - ˙ A N
30 13 1 2 deg1xrcl A N B D A N *
31 25 30 syl φ D A N *
32 0xr 0 *
33 32 a1i φ 0 *
34 1re 1
35 rexr 1 1 *
36 34 35 mp1i φ 1 *
37 13 1 3 6 deg1sclle R Ring N K D A N 0
38 16 11 37 syl2anc φ D A N 0
39 0lt1 0 < 1
40 39 a1i φ 0 < 1
41 31 33 36 38 40 xrlelttrd φ D A N < 1
42 eqid mulGrp P = mulGrp P
43 42 2 mgpbas B = Base mulGrp P
44 eqid mulGrp P = mulGrp P
45 43 44 mulg1 X B 1 mulGrp P X = X
46 22 45 syl φ 1 mulGrp P X = X
47 46 fveq2d φ D 1 mulGrp P X = D X
48 1nn0 1 0
49 13 1 4 42 44 deg1pw R NzRing 1 0 D 1 mulGrp P X = 1
50 9 48 49 sylancl φ D 1 mulGrp P X = 1
51 47 50 eqtr3d φ D X = 1
52 41 51 breqtrrd φ D A N < D X
53 1 13 16 2 5 22 25 52 deg1sub φ D X - ˙ A N = D X
54 29 53 syl5eq φ D G = D X
55 54 51 eqtrd φ D G = 1
56 55 48 eqeltrdi φ D G 0
57 eqid 0 P = 0 P
58 13 1 57 2 deg1nn0clb R Ring G B G 0 P D G 0
59 16 28 58 syl2anc φ G 0 P D G 0
60 56 59 mpbird φ G 0 P
61 55 fveq2d φ coe 1 G D G = coe 1 G 1
62 7 fveq2i coe 1 G = coe 1 X - ˙ A N
63 62 fveq1i coe 1 G 1 = coe 1 X - ˙ A N 1
64 48 a1i φ 1 0
65 eqid - R = - R
66 1 2 5 65 coe1subfv R Ring X B A N B 1 0 coe 1 X - ˙ A N 1 = coe 1 X 1 - R coe 1 A N 1
67 16 22 25 64 66 syl31anc φ coe 1 X - ˙ A N 1 = coe 1 X 1 - R coe 1 A N 1
68 63 67 syl5eq φ coe 1 G 1 = coe 1 X 1 - R coe 1 A N 1
69 46 oveq2d φ 1 R P 1 mulGrp P X = 1 R P X
70 1 ply1sca R NzRing R = Scalar P
71 9 70 syl φ R = Scalar P
72 71 fveq2d φ 1 R = 1 Scalar P
73 72 oveq1d φ 1 R P X = 1 Scalar P P X
74 1 ply1lmod R Ring P LMod
75 16 74 syl φ P LMod
76 eqid Scalar P = Scalar P
77 eqid P = P
78 eqid 1 Scalar P = 1 Scalar P
79 2 76 77 78 lmodvs1 P LMod X B 1 Scalar P P X = X
80 75 22 79 syl2anc φ 1 Scalar P P X = X
81 69 73 80 3eqtrd φ 1 R P 1 mulGrp P X = X
82 81 fveq2d φ coe 1 1 R P 1 mulGrp P X = coe 1 X
83 82 fveq1d φ coe 1 1 R P 1 mulGrp P X 1 = coe 1 X 1
84 eqid 1 R = 1 R
85 3 84 ringidcl R Ring 1 R K
86 16 85 syl φ 1 R K
87 14 3 1 4 77 42 44 coe1tmfv1 R Ring 1 R K 1 0 coe 1 1 R P 1 mulGrp P X 1 = 1 R
88 16 86 64 87 syl3anc φ coe 1 1 R P 1 mulGrp P X 1 = 1 R
89 83 88 eqtr3d φ coe 1 X 1 = 1 R
90 eqid 0 R = 0 R
91 1 6 3 90 coe1scl R Ring N K coe 1 A N = x 0 if x = 0 N 0 R
92 16 11 91 syl2anc φ coe 1 A N = x 0 if x = 0 N 0 R
93 92 fveq1d φ coe 1 A N 1 = x 0 if x = 0 N 0 R 1
94 ax-1ne0 1 0
95 neeq1 x = 1 x 0 1 0
96 94 95 mpbiri x = 1 x 0
97 ifnefalse x 0 if x = 0 N 0 R = 0 R
98 96 97 syl x = 1 if x = 0 N 0 R = 0 R
99 eqid x 0 if x = 0 N 0 R = x 0 if x = 0 N 0 R
100 fvex 0 R V
101 98 99 100 fvmpt 1 0 x 0 if x = 0 N 0 R 1 = 0 R
102 48 101 ax-mp x 0 if x = 0 N 0 R 1 = 0 R
103 93 102 eqtrdi φ coe 1 A N 1 = 0 R
104 89 103 oveq12d φ coe 1 X 1 - R coe 1 A N 1 = 1 R - R 0 R
105 ringgrp R Ring R Grp
106 16 105 syl φ R Grp
107 3 90 65 grpsubid1 R Grp 1 R K 1 R - R 0 R = 1 R
108 106 86 107 syl2anc φ 1 R - R 0 R = 1 R
109 104 108 eqtrd φ coe 1 X 1 - R coe 1 A N 1 = 1 R
110 61 68 109 3eqtrd φ coe 1 G D G = 1 R
111 1 2 57 13 12 84 ismon1p G U G B G 0 P coe 1 G D G = 1 R
112 28 60 110 111 syl3anbrc φ G U
113 7 fveq2i O G = O X - ˙ A N
114 113 fveq1i O G x = O X - ˙ A N x
115 10 adantr φ x K R CRing
116 simpr φ x K x K
117 8 4 3 1 2 115 116 evl1vard φ x K X B O X x = x
118 11 adantr φ x K N K
119 8 1 3 6 2 115 118 116 evl1scad φ x K A N B O A N x = N
120 8 1 3 2 115 116 117 119 5 65 evl1subd φ x K X - ˙ A N B O X - ˙ A N x = x - R N
121 120 simprd φ x K O X - ˙ A N x = x - R N
122 114 121 syl5eq φ x K O G x = x - R N
123 122 eqeq1d φ x K O G x = 0 ˙ x - R N = 0 ˙
124 106 adantr φ x K R Grp
125 3 14 65 grpsubeq0 R Grp x K N K x - R N = 0 ˙ x = N
126 124 116 118 125 syl3anc φ x K x - R N = 0 ˙ x = N
127 123 126 bitrd φ x K O G x = 0 ˙ x = N
128 velsn x N x = N
129 127 128 bitr4di φ x K O G x = 0 ˙ x N
130 129 pm5.32da φ x K O G x = 0 ˙ x K x N
131 eqid R 𝑠 K = R 𝑠 K
132 eqid Base R 𝑠 K = Base R 𝑠 K
133 3 fvexi K V
134 133 a1i φ K V
135 8 1 131 3 evl1rhm R CRing O P RingHom R 𝑠 K
136 10 135 syl φ O P RingHom R 𝑠 K
137 2 132 rhmf O P RingHom R 𝑠 K O : B Base R 𝑠 K
138 136 137 syl φ O : B Base R 𝑠 K
139 138 28 ffvelrnd φ O G Base R 𝑠 K
140 131 3 132 9 134 139 pwselbas φ O G : K K
141 140 ffnd φ O G Fn K
142 fniniseg O G Fn K x O G -1 0 ˙ x K O G x = 0 ˙
143 141 142 syl φ x O G -1 0 ˙ x K O G x = 0 ˙
144 11 snssd φ N K
145 144 sseld φ x N x K
146 145 pm4.71rd φ x N x K x N
147 130 143 146 3bitr4d φ x O G -1 0 ˙ x N
148 147 eqrdv φ O G -1 0 ˙ = N
149 112 55 148 3jca φ G U D G = 1 O G -1 0 ˙ = N