Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomials
ply1ring
Next ⟩
psr1lmod
Metamath Proof Explorer
Ascii
Unicode
Theorem
ply1ring
Description:
Univariate polynomials form a ring.
(Contributed by
Stefan O'Rear
, 22-Mar-2015)
Ref
Expression
Hypothesis
ply1ring.p
⊢
P
=
Poly
1
⁡
R
Assertion
ply1ring
⊢
R
∈
Ring
→
P
∈
Ring
Proof
Step
Hyp
Ref
Expression
1
ply1ring.p
⊢
P
=
Poly
1
⁡
R
2
eqid
⊢
PwSer
1
⁡
R
=
PwSer
1
⁡
R
3
eqid
⊢
Base
P
=
Base
P
4
1
2
3
ply1bas
⊢
Base
P
=
Base
1
𝑜
mPoly
R
5
1
2
3
ply1subrg
⊢
R
∈
Ring
→
Base
P
∈
SubRing
⁡
PwSer
1
⁡
R
6
4
5
eqeltrrid
⊢
R
∈
Ring
→
Base
1
𝑜
mPoly
R
∈
SubRing
⁡
PwSer
1
⁡
R
7
1
2
ply1val
⊢
P
=
PwSer
1
⁡
R
↾
𝑠
Base
1
𝑜
mPoly
R
8
7
subrgring
⊢
Base
1
𝑜
mPoly
R
∈
SubRing
⁡
PwSer
1
⁡
R
→
P
∈
Ring
9
6
8
syl
⊢
R
∈
Ring
→
P
∈
Ring