Metamath Proof Explorer


Theorem ply1scl0

Description: The zero scalar is zero. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses ply1scl.p P = Poly 1 R
ply1scl.a A = algSc P
ply1scl0.z 0 ˙ = 0 R
ply1scl0.y Y = 0 P
Assertion ply1scl0 R Ring A 0 ˙ = Y

Proof

Step Hyp Ref Expression
1 ply1scl.p P = Poly 1 R
2 ply1scl.a A = algSc P
3 ply1scl0.z 0 ˙ = 0 R
4 ply1scl0.y Y = 0 P
5 1 ply1sca R Ring R = Scalar P
6 5 fveq2d R Ring 0 R = 0 Scalar P
7 3 6 eqtrid R Ring 0 ˙ = 0 Scalar P
8 7 fveq2d R Ring A 0 ˙ = A 0 Scalar P
9 eqid Scalar P = Scalar P
10 1 ply1lmod R Ring P LMod
11 1 ply1ring R Ring P Ring
12 2 9 10 11 ascl0 R Ring A 0 Scalar P = 0 P
13 8 12 eqtrd R Ring A 0 ˙ = 0 P
14 13 4 eqtr4di R Ring A 0 ˙ = Y