Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomials
ply1scl0
Next ⟩
ply1scl0OLD
Metamath Proof Explorer
Ascii
Unicode
Theorem
ply1scl0
Description:
The zero scalar is zero.
(Contributed by
Stefan O'Rear
, 29-Mar-2015)
Ref
Expression
Hypotheses
ply1scl.p
⊢
P
=
Poly
1
⁡
R
ply1scl.a
⊢
A
=
algSc
⁡
P
ply1scl0.z
⊢
0
˙
=
0
R
ply1scl0.y
⊢
Y
=
0
P
Assertion
ply1scl0
⊢
R
∈
Ring
→
A
⁡
0
˙
=
Y
Proof
Step
Hyp
Ref
Expression
1
ply1scl.p
⊢
P
=
Poly
1
⁡
R
2
ply1scl.a
⊢
A
=
algSc
⁡
P
3
ply1scl0.z
⊢
0
˙
=
0
R
4
ply1scl0.y
⊢
Y
=
0
P
5
1
ply1sca
⊢
R
∈
Ring
→
R
=
Scalar
⁡
P
6
5
fveq2d
⊢
R
∈
Ring
→
0
R
=
0
Scalar
⁡
P
7
3
6
eqtrid
⊢
R
∈
Ring
→
0
˙
=
0
Scalar
⁡
P
8
7
fveq2d
⊢
R
∈
Ring
→
A
⁡
0
˙
=
A
⁡
0
Scalar
⁡
P
9
eqid
⊢
Scalar
⁡
P
=
Scalar
⁡
P
10
1
ply1lmod
⊢
R
∈
Ring
→
P
∈
LMod
11
1
ply1ring
⊢
R
∈
Ring
→
P
∈
Ring
12
2
9
10
11
ascl0
⊢
R
∈
Ring
→
A
⁡
0
Scalar
⁡
P
=
0
P
13
8
12
eqtrd
⊢
R
∈
Ring
→
A
⁡
0
˙
=
0
P
14
13
4
eqtr4di
⊢
R
∈
Ring
→
A
⁡
0
˙
=
Y