Metamath Proof Explorer


Theorem ply1scl1

Description: The one scalar is the unit polynomial. (Contributed by Stefan O'Rear, 1-Apr-2015) (Proof shortened by SN, 12-Mar-2025)

Ref Expression
Hypotheses ply1scl.p P = Poly 1 R
ply1scl.a A = algSc P
ply1scl1.o 1 ˙ = 1 R
ply1scl1.n N = 1 P
Assertion ply1scl1 R Ring A 1 ˙ = N

Proof

Step Hyp Ref Expression
1 ply1scl.p P = Poly 1 R
2 ply1scl.a A = algSc P
3 ply1scl1.o 1 ˙ = 1 R
4 ply1scl1.n N = 1 P
5 1 ply1sca R Ring R = Scalar P
6 5 fveq2d R Ring 1 R = 1 Scalar P
7 3 6 eqtrid R Ring 1 ˙ = 1 Scalar P
8 7 fveq2d R Ring A 1 ˙ = A 1 Scalar P
9 eqid Scalar P = Scalar P
10 1 ply1lmod R Ring P LMod
11 1 ply1ring R Ring P Ring
12 2 9 10 11 ascl1 R Ring A 1 Scalar P = 1 P
13 8 12 eqtrd R Ring A 1 ˙ = 1 P
14 13 4 eqtr4di R Ring A 1 ˙ = N